
www.manaraa.com

 1

ABSTRACT

BOYER, KRISTY ELIZABETH. Structural and Dialogue Act Modeling in Task-Oriented

Tutorial Dialogue. (Under the direction of James C. Lester and Mladen A. Vouk.)

Creating intelligent systems that bring the benefits of one-on-one human tutoring to a broad

population of learners is a grand challenge for the field of computing. Tutorial dialogue

systems, which engage learners in rich natural language dialogue in support of a learning

task, hold great promise for addressing this challenge. A particularly important research

direction involves utilizing data-driven approaches for defining the behavior of tutorial

dialogue systems based on corpora of effective human tutoring. These data-driven

approaches may facilitate rapid dialogue system development, give rise to flexible dialogue

management policies, and ultimately result in a more effective learning experience for

students. The goal of the research reported in this dissertation is to develop computational

models of effective human tutorial dialogue. The work includes two phases of data-driven

investigation. The first phase involves collecting, annotating, and exploring corpora, while

the second phase involves developing and evaluating computational models of hidden

dialogue state, student dialogue act classification, and tutor move prediction.

Three tutorial dialogue corpora in the domain of introductory computer programming

were collected through human tutoring studies. Exploring these corpora revealed some

important aspects of the structure of dialogue in this complex task-oriented domain. First,

human tutors appear to adapt to learner characteristics such as incoming knowledge level,

self-efficacy, and gender. Second, tutors undertake a variety of cognitive and motivational

remediation; sometimes these cognitive and motivational concerns appear to be at odds with

each other, but it may be possible to reconcile the two goals by selecting appropriate

feedback. Finally, compared to a highly proactive tutoring approach in which the tutor

maintains control of the dialogue, offering more autonomy may better support students‘

motivation.

www.manaraa.com

 2

 To construct computational models of the tutorial dialogue, a hidden Markov

modeling framework was selected because hidden Markov models (HMMs) explicitly

represent a stochastic layer of hidden structure. One of the hypotheses of this dissertation

states that this hidden structure corresponds to tutoring modes from the literature. The utility

of HMM-based modeling was examined through qualitative analysis and quantitative

comparison of classification and prediction accuracy with other types of models. Qualitative

examination of learned HMMs indicated that their structure bears a resemblance to tutoring

modes from the literature. Analysis also revealed that the frequency of occurrence of a subset

of the automatically extracted tutoring modes significantly correlates with student learning,

suggesting that HMMs can probably discover meaningful hidden dialogue structure.

Based on these encouraging results, HMMs were also utilized to produce feature

vectors that were used within a larger set of attributes for vector-based maximum likelihood

classification of student dialogue acts. However, in the presence of automatically extracted

lexical (word-based) features, the HMM‘s features did not improve the classification

accuracy of the model. On the other hand, when the HMM approach was extended to predict

tutorial moves within the corpus, the hidden dialogue state significantly increased prediction

accuracy. Furthermore, explicitly modeling task structure within a hierarchical HMM

provided a significant improvement in performance accuracy compared to a flat HMM.

While the Intelligent Tutoring Systems field is only just beginning to understand the

impact of natural language dialogue, affect, collaboration, and other phenomena on students‘

learning, the Natural Language Dialogue research community is also beginning to embrace

complex task-oriented domains as a focus for system development. This work takes an

important step toward creating fully data-driven tutorial dialogue management models that

may address the high development cost and barriers to effectiveness that are associated with

the current generation of dialogue systems.

www.manaraa.com

 3

Structural and Dialogue Act Modeling in

Task-Oriented Tutorial Dialogue

by

Kristy Elizabeth Boyer

A dissertation submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2010

APPROVED BY:

___________________________ ___________________________

Dr. Laurie Williams Dr. Tiffany Barnes

___________________________ ___________________________

Dr. Mladen Vouk Dr. James Lester

Co-Chair of Advisory Committee Chair of Advisory Committee

www.manaraa.com

UMI Number: 3442597

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 3442597

Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

www.manaraa.com

ii

DEDICATION

To Mildred Elizabeth Newberry (1927–2008), my grandmother and best friend.

Grammies, I wish you were still here so you could see that you were right all along.

I did do it.

www.manaraa.com

iii

BIOGRAPHY

 Kristy Elizabeth Bland was born in Valdosta, Georgia on February 2, 1979. She

graduated as valedictorian of the class of 1997 from Lowndes High School. She obtained a

Bachelor of Science degree in Mathematics and Computer Science with a minor in Spanish

from Valdosta State University in 1999. She completed a Master of Science degree in

Applied Statistics from the Georgia Institute of Technology in 2000. She was employed as a

statistician and software developer in the Operations Research department of Delta Air Lines

during 2000 and 2001. She then joined the faculty at Valdosta State University as an

Instructor of Mathematics and Computer Science until 2005, when she began Ph.D. studies at

North Carolina State University. Kristy married Tom Boyer in 2004, and their son Rowan

was born in 2007.

www.manaraa.com

iv

ACKNOWLEDGMENTS

My husband Tom and my son Rowan have given me love and encouragement during very

long working hours and when I had to be away from home. Tom has taken on a huge share of

household duties, and his hard work, patience, and sense of humor have made my years as a

Ph.D. student truly wonderful. My mother, Beth Bland, has made loving sacrifices

throughout my life that have made this achievement possible. Her ongoing generosity of time

and energy has also made the first years of my son‘s life the best they could possibly be. My

father, Russell Bland, always encouraged me—through word and deed—to take on a

challenge. My sister, Julie Doner, provided unconditional love and a listening ear. My dear

friend Tim Brown made frequent, extraordinary sacrifices on behalf of my family and me

personally. My extended family, Bob Doner, David and Erica Boyer, Rob Boyer, Mike and

Sue Boyer, Jill Boyer, Doris Boyer, Jack and Betty Rickard, and Leo and Darline Ramer

provided love and support. My close friends and church family at Triangle Vineyard

Christian Fellowship made sure I never felt alone. Mike Stockstill enthusiastically and

precisely answered many statistics questions.

James Lester, my advisor, has set an impeccable example of scholarly

professionalism. Mladen Vouk, my advisor, has provided amazing breadth of insight and

staunch support. Laurie Williams and Tiffany Barnes, members of my committee, have set a

high scholarly bar for which I am very thankful, and they have mentored me both personally

and professionally. Kera Bell-Watkins and Teresa Dahlberg have provided friendship and

mentoring. Brian Dorn, Ed Gehringer, Mark Guzdial, Orit Hazzan, Chad Lane, Diane

Litman, Andy Meneely, Carol Miller, Tanja Mitrovic, Rodney Nielsen, Amanda Stent, and

Allison Tew helped shape this work with their knowledgeable advice. Thanks to all my

friends and family not mentioned by name for countless hours of insightful conversations,

practical help, and encouragement.

www.manaraa.com

v

My colleagues in the Intellimedia Group have provided vital support and

collaboration. Eunyoung Ha implemented the base HMM training software and extracted

linguistic features. She has also engaged in challenging and stimulating technical discussions

with me that have shaped the direction of my work. Rob Phillips has also kindly applied his

vast technical knowledge to our collaboration, assisting with model interpretation, designing

dialogue act annotation schemes, and formulating the task annotation schemes. He has also

spent many long hours annotating corpora. Michael Wallis provided implementation support

for software and many hours of labor during tutoring studies. Colleagues including Rachael

Dwight, Julius Goth, Joe Grafsgaard, Seung Lee, Scott McQuiggan, Bradford Mott, Jennifer

Robison, Jonathan Rowe, and Lucy Shores assisted with many aspects of this work.

I have had the pleasure of collaborating with several undergraduate researchers who

have contributed in essential ways to this dissertation research. August Dwight and Taylor

Fondren applied their considerable talents to developing the collaborative tutoring

environment software. They showed great patience with my inexperience at overseeing such

projects, and they achieved productivity well beyond what is normally expected of

undergraduate researchers. Amy Ingram collaborated on refining and applying the dialogue

act annotation scheme to the main tutoring corpus. Even after her summer research position

had ended, she spent many tireless hours collaboratively refining the task annotation scheme

and then applying it to more than sixty hours of tutorial dialogue. Her excellent work ethic

and natural intuition regarding tutorial dialogue phenomena were very valuable to this

project.

The IT staff in the Department of Computer Science have provided frequent support.

Marhn Fullmer stayed late on many occasions to help set up computers for the tutoring

studies. His dedication to furthering the research in our department, and to serving the faculty

and students as an IT professional, is well above the call of duty. Carlos Benavente, Jason

Corley, Trey Murdoch, and Sarah Williams always provided needed help despite their heavy

workloads. Thanks to the Computer Science departmental staff including Barbara Adams,

www.manaraa.com

vi

Ginny Adams, Carol Allen, Ron Hartis, Linda Honeycutt, Ann Hunt, Margery Page, Susan

Peaslee, Missy Seate, and Monica Watkins.

Members of the Realsearch group have provided software development project

support. Dright Ho spent hours assisting with the extension of his pair programming Eclipse

plug-in. Lucas Layman offered his Eclipse development expertise and very welcome sense of

humor. Mark Sherriff provided technical support for the RIPPLE development repository.

This material is based in part upon work supported by the National Science

Foundation under a Graduate Research Fellowship and grants CNS-0540523, CNS-0739216,

ITWF-0204222, REC-0632450, IIS-0812291. Any opinions, findings, conclusions or

recommendations expressed in this material are those of the author and do not necessarily

reflect the views of the National Science Foundation. Support has also been provided by

North Carolina State University through the Department of Computer Science and the Office

of the Dean of the College of Engineering.

www.manaraa.com

vii

TABLE OF CONTENTS

LIST OF TABLES ...x

LIST OF FIGURES ... xi

CHAPTER 1 Introduction ...1

1.1 Challenges ...3

1.2 Research Questions and Hypotheses...4

1.3 Approach ...6

1.4 Terminology ..9

1.5 Contributions ...11

1.6 Organization ..14

CHAPTER 2 Background and Related Work ..15

2.1 Effectiveness of Human-Human Tutorial Dialogue ...15

2.2 Tutorial Dialogue Systems ..21

2.3 User Utterance Interpretation in Dialogue Systems ..32

2.4 Move Selection in Dialogue Systems ...35

CHAPTER 3 Human Tutoring Studies ..38

3.1 Software ..39

3.2 Student Participants...40

3.3 Tutors ..40

3.4 Problem-Solving Task...41

3.5 Procedure and Instruments ..42

3.6 Tutorial Interaction ...44

3.7 Structure of Tutoring Corpora...45

CHAPTER 4 Dialogue and Task Annotation ..47

www.manaraa.com

viii

4.1 Dialogue Act Annotation ..49

4.2 Task Annotation ..55

4.3 Other Types of Annotation ...58

CHAPTER 5 Exploratory Analysis of Tutorial Dialogue Corpora63

5.1 Tutorial Adaptation to Student Characteristics ...63

5.2 Impact of Corrective Feedback ...68

5.3 Tutor Initiative ..74

5.4 Discussion of Exploratory Findings ..76

CHAPTER 6 Modeling Hidden Tutorial Dialogue State with Hidden Markov Models ..78

6.1 Introduction to Hidden Markov Models ...79

6.2 Identifying Hidden Tutorial Dialogue States with HMMs81

6.3 Leveraging Adjacency Pairs with Bigram HMMs ..86

6.4 Correlations Between Hidden Dialogue State and Student Learning96

CHAPTER 7 Dialogue Act Classification in Task-Oriented Tutorial Dialogue104

7.1 Features ...105

7.2 Input Vectors ...107

7.3 Dialogue Act Classification Experiments ...108

7.4 Discussion ...113

CHAPTER 8 Leveraging Hidden Dialogue State to Select Tutorial Moves115

8.1 Introduction to Hierarchical Hidden Markov Models...116

8.2 Learned Hierarchical HMM ..117

8.3 Comparison of MM, HMM, and HHMM Prediction Accuracy118

8.4 Discussion ...120

CHAPTER 9 Conclusion ...123

9.1 Hypotheses Revisited ..123

9.2 Summary ...127

9.3 Limitations ..128

www.manaraa.com

ix

9.4 Future Work ..129

9.5 Concluding Remarks ...130

GLOSSARY ..131

REFERENCES ..133

APPENDICES ...150

APPENDIX A: Select materials for Study I ..151

APPENDIX B: Materials for Main Study ...164

www.manaraa.com

x

LIST OF TABLES

Table 1. Excerpt of corpus as structured in database ... 46

Table 2. Corpus I dialogue act annotation scheme .. 53

Table 3. Corpus II dialogue act annotation scheme ... 54

Table 4. Corpus III dialogue act annotation scheme .. 56

Table 5. Task correctness annotation scheme .. 58

Table 6. Modified dialogue act tagset for training HMMs on Corpus II 82

Table 7. Statistically significant adjacency pairs in Corpus II... 88

Table 8. Student dialogue acts, frequencies, and Kappas in Corpus III 105

Table 9. Feature vectors for dialogue act classification ... 109

Table 10. Feature selection for binary dialogue act classifiers .. 112

Table 11. Programming exercise for pilot studies I and II .. 151

Table 12. Student pre-survey for pilot study I ... 154

Table 13. Student post-survey for pilot study I.. 155

Table 14. Student pre-test for pilot study I .. 158

Table 15. Student post-test for pilot study I ... 161

Table 16. Programming exercise for main study ... 164

Table 17. Student pre-survey for main study ... 167

Table 18. Pre/post-test for main study ... 169

Table 19. Student post-survey for main study ... 170

www.manaraa.com

xi

LIST OF FIGURES

Figure 1. Corpus-based approach .. 8

Figure 2. The 5-step tutoring frame ... 22

Figure 3. Remote collaborative tutoring interface ... 39

Figure 4. Excerpt from Corpus III illustrating dialogue and task annotations 48

Figure 5. Kappa statistic interpretation scheme ... 50

Figure 6. Portion of hierarchical task annotation scheme .. 57

Figure 7. Excerpt from STUDENT-INITIATIVE and TUTOR-INITIATIVE modes 62

Figure 8. Excerpts from Corpus I illustrating low vs. high pre-test student dialogue 65

Figure 9. Dialogue profiles with statistically significant differences (p<0.05) in bold 66

Figure 10. Dialogue acts that follow incorrect student task action .. 69

Figure 11. Time-slice topology of first-order Markov model.. 79

Figure 12. Time-slice topology of first-order hidden Markov model 80

Figure 13. Unigram HMM ... 84

Figure 14. Adjacency-pair joining algorithm... 89

Figure 15. Example of input sequences before and after adjacency-pair joining 89

Figure 16. Dialogue act (unigram) and adjacency pair (bigram) HMMs 91

Figure 17. Dialogue act sequences as generated by unigram and bigram HMMs 93

Figure 18. Portion of bigram HMM for Tutor A, Corpus III ... 99

Figure 19. Portion of bigram HMM for Tutor B, Corpus III ... 100

Figure 20. Relative frequency of hidden states across corpus for Tutor A and Tutor B 101

Figure 21. Generation of hidden dialogue state features ... 107

Figure 22. Confusion matrix for student dialogue act classification (row=true tag) 110

Figure 23. Generative topology of hierarchical HMM .. 117

www.manaraa.com

xii

Figure 24. Bayesian view of learned hierarchical HMM ... 118

Figure 25. Avg. prediction accuracy across folds of MM, HMM, and HHMM compared to

the most-frequent class baseline .. 119

Figure 26. Average HHMM prediction accuracy across folds by subtask 120

www.manaraa.com

1

CHAPTER 1

Introduction

One-on-one human tutoring is a highly effective mode of instruction that generally results in

significantly higher student learning than group classroom instruction (Bloom, 1984; Chi et

al., 2001; Cohen et al., 1982; VanLehn et al., 2007). Bringing this highly effective

instruction to learners is a primary focus of research on intelligent tutoring systems (ITSs).

This research has adapted and created methods and technologies applicable to education,

often in the form of intelligent tutoring systems (Wenger, 1987). One of the grand challenges

for the field of computing today has been identified as providing a teacher for every learner,
1

and today‘s ITSs have made great strides toward that goal. However, the field has not yet

seen ITSs that meet or exceed the learning gains achieved with expert human tutors

(VanLehn, 2008). One hypothesis is that the greater effectiveness of human tutoring lies with

the natural language dialogue exchanged between tutor and student (Graesser et al., 1995).

This hypothesis states that intelligent systems will not achieve human-like effectiveness as

tutors until the systems can engage in rich natural language dialogue with students. This

hypothesis has spurred the emergence of natural language intelligent tutoring systems, known

as tutorial dialogue systems. The work reported in this dissertation makes contributions to

tutorial dialogue systems research by exploring corpora of tutorial dialogue and modeling

effective human-human tutoring strategies.

1
 Computing Research Association‘s Grand Challenges in Information Systems,

http://www.cra.org/uploads/documents/resources/rissues/gc.systems_.pdf

www.manaraa.com

2

In addition to drawing heavily on ITS research, tutorial dialogue systems draw on

natural language dialogue systems research, which constitutes an active line of investigation

within the field of computational linguistics. For all dialogue systems, including tutorial

dialogue systems, two central challenges are interpreting user (student) utterances and

selecting system (tutor) dialogue moves.

Interpreting user utterances involves a variety of speech and language understanding

steps. One important aspect of the process is to identify the dialogue act, or communicative

purpose, of each utterance (Austin, 1962). Dialogue acts provide a valuable intermediate

representation that can be used for dialogue management because they summarize the action

represented by a dialogue move, e.g., asking a question or giving a command.

The need for automatic dialogue act interpretation has led to machine learning

approaches that take into account a variety of features for data-driven dialogue act tagging

(Bangalore et al., 2008; Hardy et al., 2006; Sridhar et al., 2009; Stolcke et al., 2000). This

work on dialogue act interpretation has generally focused on conversational speech or on

simple task-oriented dialogue. Complex task-oriented dialogue, such as tutorial dialogue for

introductory computer programming, has not been extensively studied within dialogue

systems research. A contribution of this dissertation is a machine-learned model of user

dialogue act classification in a complex task-oriented domain.

 A complementary task to user utterance interpretation is selecting a system dialogue

move. Machine learning techniques for this task are also receiving increasing attention

(Bangalore et al., 2008; Chotimongkol, 2008; Levin et al., 2000; Singh et al., 2002; Stolcke

et al., 2000; Toney et al., 2006; Young, 2000; Young et al., 2009). These approaches

leverage the growing set of available human-human dialogue corpora to directly author new

computer-based dialogue system behavior. In contrast, historically the behavior of tutorial

dialogue systems has been informed by observational studies of human tutoring followed by

manual identification of phenomena of interest and desirable tutoring behaviors (Cade et al.,

www.manaraa.com

3

2008; Graesser et al., 1995; Lepper et al., 1993). Recently, the use of machine learning

techniques has begun to make its way into tutorial dialogue research (Ai et al., 2007; Chi, M.

et al., 2009; Tetreault & Litman, 2008; Chi, M. et al., 2010), but adapting these techniques to

a complex task-oriented domain such as introductory computer programming is a central

challenge. A contribution of the current research is a data-driven approach to extracting a

tutorial dialogue management model from a corpus of effective human-human tutoring with

hidden Markov models. These models infer the hidden dialogue state and leverage

knowledge of the hierarchical task/subtask structure.

This work utilizes tutorial dialogue corpora from introductory computer

programming. Improving the student experience in an introductory computing course is

important. Research suggests some ways to achieve that goal include encouraging students to

pair program (Nagappan et al., 2003), providing a variety of course formats such as one in

digital media computation (Guzdial & Tew, 2006), and maintaining smaller class sizes

(Boyer, Dwight et al., 2007). Another contribution of the current work is a model of tutoring

effectiveness that reveals insights into the cognitive and affective mechanisms by which

students learn computing.

This project contributes to the author‘s longer-term goal of creating a data-driven

tutorial dialogue system for introductory computer science that is as effective as an expert

human tutor. As the remainder of this chapter describes, this endeavor poses significant

challenges, and the current work addresses some of those challenges by creating

computational models of effective human tutoring.

1.1 Challenges

A number of challenges are posed by creating a tutorial dialogue system that is as effective as

the most effective human tutors. Decades of intelligent tutoring systems research have held

such effectiveness as their ultimate goal, but none have achieved it (VanLehn, 2008).

www.manaraa.com

4

Developing tutoring systems is costly, often requiring hundreds of development hours per

hour of tutoring instruction, and tutorial dialogue management systems have limited

generalizability across domains (Aleven et al., 2009). The central tasks of user utterance

interpretation and system response selection, along with how to deal with issues such as ill-

formed user input, identifying the user‘s goals within the task, and selecting a system move

are all open problems (Bangalore et al., 2008; Tetreault & Litman, 2008). These problems

have been less explored in the context of complex task-oriented domains than in other

dialogue areas such as conversational speech (e.g., people talking socially on the telephone)

or simpler task-oriented dialogue (e.g., booking an airline ticket through a telephone

reservation system). A task focus of solving an introductory computer programming problem

provides some structure that is absent from conversational speech, but also introduces a more

complex and open-ended task than most of the other task-oriented domains that have been

studied within the dialogue systems community. To address these challenges, the research

questions and associated hypotheses in this dissertation focus on how to learn computational

models of complex task-oriented tutorial dialogue.

1.2 Research Questions and Hypotheses

This project contributes to the goal of creating a data-driven tutorial dialogue system. Toward

that end, the primary goal of this work is to discover, investigate and construct

computational models of human tutoring in the domain of introductory computer

programming. This project can be viewed in two phases. The first phase consists of data

collection, annotation, and exploration to understand the structure of tutorial dialogue in

introductory computer programming, a domain for which no sizeable corpora were

previously available. This phase corresponds to Research Question 1 below and its associated

hypotheses. The second phase, which involves discovering and evaluating computational

www.manaraa.com

5

models on the collected corpora, corresponds to Research Question 2 below and its

associated hypotheses.

Research Question 1 (Exploratory). How do human tutors help students learn

introductory computer programming?

Hypothesis 1.1. Because human tutors adapt their behavior based on student

characteristics including skill level, self-efficacy, and gender, the distribution of

dialogue acts within human-to-human tutoring sessions are dependent on these

student characteristics (Section 5.1).

Hypothesis 1.2. Because some tutoring approaches are more effective than others,

given a tutoring context, the frequency of some tutor moves is positively correlated

with student learning and motivational outcomes while other moves are negatively

correlated with these outcomes (Section 5.2).

Hypothesis 1.3. Because autonomy is an important aspect of the learning process

that may impact cognitive and motivational outcomes differently, the level of

autonomy given to students during tutoring is correlated with learning and

motivational outcomes (Section 5.3).

Research Question 2. How can a tutorial dialogue management model be machine

learned directly from a corpus of human tutoring?

Hypothesis 2.1. Hidden Markov models (HMMs) are able to discover tutoring

modes, or hidden dialogue states, that i) qualitatively correspond to tutoring modes

from the literature, and ii) whose frequencies of occurrence correlate with student

learning (Sections 6.1-6.3).

Hypothesis 2.2. The structural components of hidden dialogue state and

task/subtask features are predictive of student dialogue acts (Chapter 7).

www.manaraa.com

6

Specifically, let B1, a baseline model, be a first-order Markov (bigram) model over

dialogue act sequences. Let model M1 be a classifier that uses lexical features

(words, parts of speech, syntax) and structural features (speaker history, dialogue

act history) associated with student utterances to classify the dialogue act of those

utterances. Let M1’ be a classifier that extends M1 by additionally utilizing hidden

dialogue state features as learned by an HMM, and manually annotated task/subtask

structure. Then, in ten-fold stratified cross-validation, in which 90% of the data are

used for training and 10% are used for testing, the following result will emerge:
2

accuracy(B1) < accuracy(M1) < accuracy(M1’)

Hypothesis 2.3. The structural components of hidden dialogue state and

task/subtask features are predictive of tutor dialogue acts (Chapter 8). Specifically,

let B2, a baseline model, be a first-order Markov (bigram) model over dialogue act

sequences. Let model M2 be a hidden Markov model that predicts tutor dialogue

acts based on sequences of dialogue acts and task events. Let M2’ be a hierarchical

hidden Markov model whose structure extends that of M2 by explicitly capturing

the hierarchical nesting of tasks and subtasks. Then, cross-validation on the corpus

will reveal the following result:

accuracy(B2) < accuracy(M2) < accuracy(M2’)

1.3 Approach

This project utilizes a corpus-based research methodology (Figure 1). First, a corpus of

human task-oriented tutorial dialogue was collected. The domain is introductory computer

2
 Accuracy is calculated as number of correctly predicted instances divided by total number of predicted

instances.

www.manaraa.com

7

programming in Java. Next, the dialogue corpus was manually annotated with dialogue acts

designed to capture the cognitive, motivational, and affective purposes of each utterance. The

annotation also included a separate annotation for task/subtask structure and problem-solving

correctness. In both dialogue and task annotation, inter-rater agreement studies were

conducted to ensure sufficient reliability of the tagging scheme. With the corpora annotated,

exploratory analyses included Pearson‘s correlation analysis, logistic regression, and Chi-

square tests for independence of factors (De Veaux et al., 2005). These analyses address

Hypotheses 1.1, 1.2, and 1.3 above. HMMs (Rabiner, 1989) address Hypothesis 2.1, with

subsequent correlation analysis between the components of the HMM and the student

learning outcomes. HMMs were also utilized, along with a vector-based logistic regression

classifier, for the student utterance classification task of Hypothesis 2.2. Finally, HMMs and

hierarchical HMMs (Fine et al., 1998) were learned to address the tutor move prediction task

of Hypothesis 2.3. The models were evaluated based on their performance for the tasks of

interest. For exploratory models this measure involves level of statistical significance. For

classification and prediction models the accuracy is used, where the manually annotated

dialogue act is treated as the true answer. Accuracy is calculated via stratified n-fold cross-

validation.

www.manaraa.com

8

Figure 1. Corpus-based approach

www.manaraa.com

9

1.4 Terminology

The pre- and post-measures taken during tutoring studies utilize a variety of cognitive and

motivational outcomes. Cognitive measures deal with students‘ knowledge or understanding

of concepts or applied skills. In this context, cognitive metrics include pre-test score, which

measures to what extent students are familiar with the target introductory computer science

course material prior to the tutoring session, and post-test score, which measures the

corresponding familiarity after the tutoring session. Learning gain is calculated as post-test

score minus pre-test score, and is used to measure how much a student learns during the

tutoring session. The full learning gain instruments from the tutoring studies are included in

Appendices A and B.

 The motivational measure utilized in this work deals with self-efficacy, which is

defined as one‘s own belief in his or her capability to produce given levels of attainment on a

particular task (Bandura, 1997). In the context of the current research, self-efficacy questions

asked students to rate how certain they were, on a scale of 0-100, that they could complete

various programming tasks. This method of measuring domain-specific self-efficacy is

adapted directly from Bandura‘s (2006) domain-specific self-efficacy scale. This dissertation

uses the term ―self-efficacy‖ rather than ―confidence,‖ in keeping with the important

distinction between these terms within the Educational Psychology literature. As explained

by Bandura (1997), ―Confidence is a nonspecific term that refers to strength of belief but

does not necessarily specify what the certainty is about. I can be supremely confident that I

will fail at an endeavor. Perceived self-efficacy refers to belief in one's agentive capabilities,

that one can produce given levels of attainment.‖

The dialogue and problem-solving traces collected during each tutoring study

constitute a corpus, a collection of written material. The discrete data points within this

corpus may be either dialogue moves or task actions. Dialogue moves, also called utterances,

www.manaraa.com

10

are turns taken within the conversation. In the current work, these utterances were sent in

textual instant message format between tutors and students. While ―dialogue move‖ and

―utterance‖ refer to the actual content of the message sent during dialogue, dialogue act

refers to the communicative purpose of the utterance. For example, the utterance, ―How do I

declare the array?‖ would have a dialogue act label of QUESTION.

Task actions refer to the computer programming actions that students took in pursuit

of solving the given programming exercise, also called the task. This terminology is chosen

in keeping with Natural Language Dialogue community‘s tradition of referring to dialogue as

―task-oriented‖ when the dialogue focuses on a task that is being undertaken. Task-oriented

dialogues are often undertaken collaboratively, e.g., problem-solving actions in the

pedagogical context of tutorial dialogue. The same community also uses the term ―task‖ to

refer to particular problems that must be addressed by a computer-based dialogue system,

such as interpreting user input. In this dissertation, the term ―task‖ will be used to refer to

both of the following: 1) the computer programming problem that students solved during the

tutoring studies, as in ―task/subtask structure,‖ and 2) the natural language dialogue tasks of

user utterance interpretation and system move selection, as in ―the task of interpreting user

input.‖ This distinction will be made explicitly when it is not clear from the context.

Please see the glossary for a summary of the terms above, as well as additional

definitions.

www.manaraa.com

11

1.5 Contributions

The work reported in this dissertation has made the following novel contributions:
3

 Tutorial dialogue corpus. Two pilot corpora and one main corpus of textual

human tutorial dialogue were collected in the domain of introductory computer

programming (Boyer, Vouk et al., 2007; Boyer, Phillips et al., 2008a; Boyer,

Phillips, Wallis et al., 2009a). All corpora were manually annotated with dialogue

act labels. The main corpus consists of approximately 60 hours of tutoring and has

been manually annotated with dialogue act labels, hierarchical task/subtask

structure, and correctness of students‘ problem-solving actions.

 Dialogue act annotation scheme. The dialogue act annotation scheme was

inspired by schemes for conversational speech, task-oriented dialogue, and

tutoring (Core & Allen, 1997; Forbes-Riley & Litman, 2005; Marineau et al.,

2000; Stolcke et al., 2000) and was adapted specifically to capture the

communicative purposes of utterances in task-oriented tutorial dialogue. Inter-

rater reliability studies have established the reliability of this dialogue act

annotation scheme.

 Task annotation scheme. The task annotation scheme was inspired by other

work on tutoring programming (Johnson & Soloway, 1985; Lane & VanLehn,

2004), and was adapted to capture the hierarchical structure of the computer

programming exercise around which the dialogue is centered. Like the dialogue

3
 Portions of this work have been conducted in collaboration with colleagues. Rob Phillips proposed an initial

dialogue act tagging scheme that heavily influenced the final scheme; Michael Wallis, Amy Ingram and

William Lahti collaborated during the refining process. Rob Phillips and Amy Ingram were also instrumental in

devising the task annotation scheme. Eunyoung Ha implemented the base HMM learning software. August

Dwight and Taylor Fondren developed much of the RIPPLE system.

www.manaraa.com

12

act tagging schemes, inter-rater reliability studies with the task annotation scheme

indicate that it is sufficiently reliable.

 Software for synchronous remote tutoring of Java programming. RIPPLE

(Remote Interactive Pair Programming and Learning Environment) was

developed as part of the current work to support the tutoring studies (Boyer,

Dwight et al., 2008). RIPPLE extends Sangam, an existing pair programming

environment for Java (Ho et al., 2004) with a textual dialogue interface and real-

time database capture of all interactions.

 Results on the Structure of Tutoring in Introductory Computer

Programming. The exploratory results from the current work suggest ways in

which tutors adapt to student characteristics (Boyer, Vouk et al., 2007),
4
 select

strategies with cognitive and motivational factors in mind (Boyer, Phillips et al.,

2008a), give and take initiative (Boyer, Phillips, Wallis et al., 2009a), and ask

questions (Boyer, Lahti et al., 2010).

 HMM Framework for Learning Hidden Dialogue State. The hidden Markov

model (HMM) and hierarchical hidden Markov model (HHMM) learning

approach discovers tutoring modes, or hidden dialogue state by utilizing a

framework that combines sequential representation of dialogue acts with

unsupervised discovery of adjacency pairs and a hierarchical task/subtask

structure (Boyer, Phillips, Wallis et al., 2009a). These tutoring modes are of

intrinsic pedagogical interest (Boyer, Phillips, Wallis et al., 2009b) and have been

shown to correlate with student learning (Boyer, Phillips, Ingram et al., 2010)
5

4
 Recipient of the Best Student Paper Award at the International Conference on Artificial Intelligence in

Education, 2007.

5
 Best Paper Award Nominee at the International Conference on Intelligent Tutoring Systems, 2010.

www.manaraa.com

13

and to aid in the classification of student dialogue acts and prediction of human

tutor moves (Boyer, Phillips, Ha et al., 2010a; Boyer, Phillips, Ha et al., 2010b).

 Statistical Dialogue Act Model for Student Utterance Classification. The

models produced by this work are designed to address the complex task-oriented

domain of introductory computer programming. This domain has characteristics

and challenges different from those in conversational speech and from most of the

other task-oriented domains that have been studied in dialogue systems research.

Leveraging lexical, syntactic, dialogue history, task history, and hidden dialogue

state features, the classifier performs comparably well to state-of-the-art

classifiers in less complex domains (Boyer et al., In press). The automatic

classification of dialogue acts is an important step toward data-driven automatic

extraction of a dialogue management model (Bangalore et al., 2008).

 HMMs and HHMMs for Tutorial Dialogue Act Prediction. The HHMM

framework for predicting tutorial dialogue acts is a step toward data-driven

tutorial planning (Boyer, Phillips, Ha et al., 2010a; Boyer, Phillips, Ha et al.,

2010b). The results demonstrate that hidden dialogue state, or tutoring mode, is an

important structural element that improves the predictive power of the learned

models on the corpus, and that explicitly representing hierarchical task/subtask

structure within a hierarchical HMM yields a significant improvement over the

prediction accuracy of a flat HMM.

Together, these contributions further the field‘s understanding of the effectiveness of

human tutoring and advance the tools and techniques available for the collection and

modeling of tutorial dialogue.

www.manaraa.com

14

1.6 Organization

The remainder of this document is structured as follows. Chapter 2 presents background and

related work on the effectiveness of tutorial dialogue, a historical view of tutorial dialogue

systems, and an overview of dialogue modeling for user dialogue act classification and

system act selection. Chapter 3 describes the tutorial dialogue studies that were conducted

during the data collection phase of the project. Chapter 4 presents the annotation schemes for

dialogue acts and task/subtask structure within the corpora. Chapter 5 describes the

exploratory analyses that provided insights into the structure of tutorial dialogue in the

complex task-oriented domain of introductory computer programming. These results speak to

Hypotheses 1.1, 1.2, and 1.3. Chapter 6 presents machine-learned hidden Markov models of

hidden dialogue states, discusses their structure, and examines their correlation with student

learning (Hypothesis 2.1). Chapter 7 presents a learned model for user dialogue act

classification (Hypothesis 2.2), while Chapter 8 presents a learned model for tutor dialogue

move prediction (Hypothesis 2.3). Chapter 9 revisits the hypotheses and presents conclusions

and directions for future work.

www.manaraa.com

15

CHAPTER 2

Background and Related Work

This dissertation project falls at the intersection of two research fields: Intelligent Tutoring

Systems and Natural Language Dialogue. Intelligent Tutoring Systems research is concerned

with the design of intelligent systems to support learners, which often involves investigating

fundamental learning processes that influence the way students interact with tutors or with

systems. Section 2.1 presents background from this literature on the effectiveness of human

tutorial dialogue, which holds important design implications for effective tutorial dialogue

systems. Section 2.2 presents an overview of existing tutorial dialogue systems to highlight

the novelty of this dissertation‘s data-driven approach to authoring a tutorial dialogue

management model.

The second field in which this dissertation is positioned is that of Natural Language

Dialogue, which is concerned with, among other things, the implementation of natural

language dialogue systems. Background from this literature involving data-driven statistical

approaches to the two central tasks of user utterance interpretation and system dialogue move

selection is presented in Sections 2.3 and 2.4, respectively. These sections highlight existing

techniques that can be adapted and extended to meet the needs of tutorial dialogue in a

complex task-oriented domain.

2.1 Effectiveness of Human-Human Tutorial Dialogue

The field of educational psychology gave rise to seminal work establishing that one-on-one

tutoring is significantly more effective than classroom instruction (Bloom, 1984; Cohen et

al., 1982). Spurred by those findings, a rich body of research has explored how students learn

www.manaraa.com

16

through tutoring. Results regarding what makes tutoring so effective are diverse and far-

reaching; yet, the field does not fully understand which mechanisms are responsible for the

full effectiveness of human tutoring. However, one important feature that has been

emphasized in myriad studies is the interaction that takes place in human tutoring.

2.1.1 Importance of interactivity

Human-human tutorial dialogue is a highly interactive process. Studies have revealed that

this interaction often takes a structured form that includes the tutor and student

collaboratively constructing and refining the solution to a problem (Fox, 1993; Graesser et

al., 1995). Controlled experiments have aimed to isolate this interactivity, providing

empirical evidence that the effectiveness of tutoring is not due solely to the quality of the

student‘s work nor to the quality of the tutor‘s moves, but rather, to the ―interaction effect‖

between the participants (Chi, M.T.H. et al., 2001). A further experiment has shown that

tutorial dialogue is so powerful that it may even be effective when viewed vicariously by

another student (Chi, M.T.H. et al., 2008). Highly interactive natural language dialogue

facilitates important cognitive moves on the part of the student such as deep questions

(Graesser & Person, 1994) and self-explanation (Chi, M.T.H. et al., 1994), and tutorial

dialogue is particularly effective when the student‘s knowledge level is not well matched to

existing learning materials (VanLehn et al., 2007). Collectively, this research indicates that

the highly interactive nature of natural language tutoring is an important contributor to its

effectiveness.

 In addition to its high level of interactivity, human tutorial dialogue exhibits other

features that have been hypothesized to contribute to its effectiveness; among these are

motivational and affective considerations. Expert human tutors have been found to pay close

attention to student motivation to improve the student‘s motivational or emotional state, for

example by occasionally presenting an easy problem that does not challenge the student, in

www.manaraa.com

17

order to increase the student‘s confidence (Lepper et al., 1993). Further work suggests that

even inexperienced human tutors respond based partly on the perceived affective state of the

student, either due to mostly-subconscious adherence to universal rules of politeness (Wang

et al., 2005), or due to conscious strategy choice (Forbes-Riley & Litman, 2005; Porayska-

Pomsta & Pain, 2004). Another contributor to the effectiveness of tutoring is the

individualized instruction made possible when a tutor considers the student‘s knowledge and

tailors questions or feedback based on the student‘s knowledge gaps (Glass et al., 1999; Holt

et al., 1994; Ohlsson, 1994; Zhou & Evens, 1999).

2.1.2 Cognitive and motivational goals in tutoring

Much of the research on motivation conducted in the ITS community is theoretically

grounded in frameworks developed in the cognitive science community over the past several

decades (Cameron & Pierce, 1994; Deci et al., 2001; Keller, 1983). These theories state that

student motivation plays a key role in the learning process. Studies of expert tutors have

found that the most effective tutors give equal attention to both the motivational and

cognitive concerns of students (Lepper et al., 1993). This work refined previous models of

motivation by postulating that motivation is comprised of confidence, challenge, control, and

curiosity. It further identifies the two strategies of praise and reassurance as direct means of

bolstering student confidence. These strategies are a form of ―verbal persuasion,‖ also

identified by Bandura (1997), as one way of increasing self-efficacy, or people‘s beliefs about

their capabilities to accomplish a particular task.

An increasingly active area of investigation is the search for tutorial dialogue policies

that address the complementary cognitive and affective concerns that shape the tutoring

process. Porayska-Pomsta and Pain (2004) use dialogue analysis to classify cognitive and

www.manaraa.com

18

affective feedback
6
 in terms of the degree to which each addresses a student‘s need for both

autonomy and approval. Forbes-Riley and Litman (2005, 2009) employ bigram analysis at

the dialogue act level to extract tutorial strategies for responding to student uncertainty.

Corpus analysis techniques have also informed work on the automatic classification of

tutorial dialogue acts (Marineau et al., 2000), though with respect to a much more limited set

of dialogue acts than is considered in this paper. Corpora have also been used to compare the

effectiveness of tutorial strategies in terms of learning outcomes (Ohlsson et al., 2007; Rosé

et al., 2003; Rosé et al., 2001).

Developing a clear understanding of the tradeoffs between cognitive and affective

feedback is an important next step in tutorial dialogue research. Prior investigations of

tutorial feedback have established a foundational understanding of cognitive feedback in

terms of how and when it is delivered (Koedinger et al., 1997). Jackson and Graesser (2007)

found the presence of cognitive feedback, as opposed to motivational ―progress‖ feedback,

was responsible for higher learning gains in experimental versions of AutoTutor; on the other

hand, the presence of cognitive feedback lowered students‘ motivational ratings. A consistent

finding observed by Tan and Biswas (2006) was that students working with modified

versions of the Betty‘s Brain tutoring system were able to learn better when given cognitive

rather than affective feedback. Kelly and Weibelzahl (2006) investigated a motivational

strategy in which a student was progressively shown another piece of a hidden image after

each successful step through the learning task. Students in the motivational treatment group

showed significantly larger increases in confidence levels compared with those in the control

group, while there was no significant difference in learning gain. Finally, Wang et al. (2005)

6
 We use feedback to refer to ―information communicated to the learner that is intended to modify the learner‘s

thinking or behavior for the purpose of improving learning‖ (Shute, 2007).

www.manaraa.com

19

found that tutors who gave polite feedback facilitated higher student self-efficacy gains,

while learning was nearly unaffected.

Beyond these broadly observable tradeoffs, investigators have also found that tutorial

strategies may impact student subgroups (e.g., low ability vs. high ability students) in

different ways. Rebolledo-Mendez et al. (2006) explored the effect of enhancing a tutoring

system with motivational scaffolding. In M-Ecolab, initially unmotivated students were

found to perform better with motivational adaptation and feedback, while students who were

already motivated did not benefit from the motivational support. In a study of perceived

politeness (a motivational aspect of tutorial utterances), Wang et al. (2005) found that

students who were experienced with computers were less bothered by direct commands from

a machine, while inexperienced students were more apt to appreciate politeness.

2.1.3 Student motivation in computer science education

The overwhelming majority of computer science education literature has focused on the

purely cognitive aspect of learning (Machanick, 2007). This trend is not surprising given the

alluring parallels between cognitive learning models and the basic functions of computing

that are fundamental to the discipline. For instance, the theoretical framework known as

constructivism has been embraced for its insights into CS learning processes (Ben-Ari, 1998),

and direct analogies are sometimes made between the constructivist view, in which students

build and ―debug‖ knowledge, and the activities involved in computer programming.

Constructivism and other purely cognitive models of learning (e.g. Bloom, 1956) are

valuable in understanding many phenomena surrounding the teaching and learning of

computing. However, these models may not capture some important facets of the computer

science learning process.

As Machanick (2007) observes, there are phenomena in CS education that are not

readily explained by current purely cognitive frameworks. He proposes that social

www.manaraa.com

20

constructivism, a theoretical framework that is gaining acceptance in the broader education

community, might offer explanations as to the observed effectiveness of some approaches

such as peer assessment and apprenticeship-style teaching (Guzdial & Tew, 2006). The

potential insights afforded by social constructivism stem from the theory‘s foundational

tenets that learning has important social roles, and that communication is key to defining the

knowledge of a learner. Evidence of the importance of communication in computer science

learning environments has been noted by Barker and Garvin-Doxas (2004), who observe that

the type of discourse that occurs in a computing classroom has far-reaching effects on

learners. Further results on the importance of communication and the social role of learning

have emerged from research in the contexts of pair programming (Slaten et al., 2005) and

non-majors learning to program (Wiedenbeck, 2005).

Tutoring is an instructional setting that has been proven effective in building

knowledge and that is rich in communication. Long studied as an exemplary way to facilitate

mastery of a subject, tutoring has been the setting for recent work in CS education research,

for example, in investigating how students plan the solution to a programming problem (Lane

& VanLehn, 2005). Because of the completeness of the instructional record created by

controlled tutorial dialogue studies, it is possible to observe and make inferences on the fine

details of learner activities.

Motivation, which refers to a learner‘s impetus for engaging in learning activities, has

received attention in the general education research community for at least two decades

(Cameron & Pierce, 1994; Deci et al., 2001; Keller, 1983). Recently, motivating the learner

has also been identified as a component of a complete conception of teaching computer

science (Lister et al., 2007). Learner motivation has also been considered in several recent

empirical studies in computer science education. For example, Soh et al. (2007) included

attitudinal variables for student self-efficacy and motivation as part of a data collection effort

to assess the effectiveness of a redesigned computer science curriculum. Additionally, pair

www.manaraa.com

21

programming researchers recognize motivation as an important facet when measuring the

impact of pair programming in educational settings (Williams et al., 2002). These studies

show an increased awareness of the importance of motivation in the computer science

learning process.

In much of the existing computer science education research, motivational measures

are taken at the beginning and end of an academic term to assess the impact of the

instructional approach utilized during the term. Tracking changes at this granularity has

proven a useful research approach. However, studying learner motivation at a finer

granularity, for instance, over the course of a single programming assignment, can

complement the coarser granularity approach generally undertaken to date. For example,

Wolfe (2004) considers learner motivation at the level of a single programming assignment,

observing that the rhetoric used in problem descriptions influences students‘ motivation.

Wolfe suggests that programming assignments should emphasize real-world purpose and

human factors. This kind of contribution is made possible by studying learner motivation at a

finer granularity than over entire academic terms.

2.2 Tutorial Dialogue Systems

Motivated in part by the demonstrated effectiveness of one-on-one human tutoring compared

to classroom instruction, the first intelligent tutoring systems (ITSs) emerged more than two

decades ago (Wenger, 1987). Despite great strides, ITSs have fallen consistently short of the

highest learning outcomes achieved by human tutors (VanLehn, 2008). One hypothesized

explanation for this discrepancy is the systems‘ lack of natural language interaction with

students. Observational studies of human tutoring have revealed a common pattern referred

to as the tutoring frame (Graesser et al., 1995). The first three elements of this frame are

present in classroom instruction and traditional ITSs. However, the last two elements, which

www.manaraa.com

22

involve interacting in natural language to improve students‘ responses, are present only in

tutorial dialogue (Figure 2).

Figure 2. The 5-step tutoring frame

In response to the hypothesis that natural language interaction constitutes a sort of ―missing

link‖ for achieving the effectiveness of expert human tutors with intelligent systems, recent

years have seen the rise of tutorial dialogue systems that interact with learners through

natural language dialogue.

2.2.1 Behavior of existing tutorial dialogue systems

This section presents several tutorial dialogue systems and discusses the extent to which the

behavior of each was informed by the study of tutoring corpora.

CIRCSIM-Tutor. CIRCSIM-Tutor, which supports students in developing an understanding of

the human circulatory system, was the result of a lengthy collaboration between researchers

at Illinois Institute of Technology and Rush Medical College (Evens & Michael, 2006). The

system presents a scenario and asks the student to predict the directionality of change in

several parameters pertaining to the cardiovascular system. Students enter those predictions

in a predictions table, and the tutor provides feedback on correctness by marking through

www.manaraa.com

23

incorrect predictions. Subsequently the system engages the student in a tutorial dialogue to

correct any misconceptions displayed by the students‘ response.

 The tutoring strategies in CIRCSIM-Tutor are comprised of a combination of two

tutorial moves: elicit and inform. Elicit involves making a request or asking a question.

Inform involves presenting facts or explanations. Rather than providing immediate feedback

on mistakes, CIRCSIM-Tutor waits for a student to complete a subset of the predictions

required by a problem before providing feedback. This strategy allows the tutor to observe a

pattern in the student‘s prediction to more accurately diagnose the potential student

misconception.

 Numerous human tutoring studies were conducted throughout the CIRCSIM project,

most with two expert tutors who were university professors. Some studies were also

conducted with unskilled tutors. The dialogues were conducted with a remote textual

dialogue system and were annotated using Standardized General Markup Language. Some

rules for the behavior of the system were extracted directly from these annotated transcripts

using decision trees. Other tutorial strategies were extracted by manually clustering tutoring

transcripts into similar groups and then noting the patterns that emerged. The project

produced particularly influential findings regarding tutorial dialogue, especially with respect

to the differences between expert and novice tutors (Evens & Michael, 2006).

AutoTutor. Developed at the University of Memphis, AutoTutor is an intelligent tutoring

system for qualitative physics and computer literacy (Graesser et al., 1999; Graesser et al.,

2004; Graesser et al., 2005). AutoTutor asks questions and assesses each student answer

using a statistical approach that matches words in the student‘s response to words in expected

correct or incorrect answers. AutoTutor then engages in remedial dialogue intended to

address misconceptions or fill gaps that were indicated in the student‘s response. The

system‘s utterances to the student are delivered in speech through a ―talking head‖ that uses

www.manaraa.com

24

gestures and facial expressions as well as intonation. The tutor utterances are also recorded in

a textual dialogue history in the interface. Student utterances are delivered textually.

AutoTutor employs a dialogue strategy that involves providing brief feedback to

assess the correctness of each student turn. Then the system moves on to another dialogue

move by selecting from one of several possible actions: pumping, prompting, elaborating,

correcting, and hinting. Pumping, such as ―Uh huh,‖ and ―What else?‖ is used near the

beginning of each dialogue to encourage the student to continue constructing utterances.

Prompting is a more content-rich version of pumping in which the tutor begins a sentence

and then pauses with vocal tone or gesture inviting the student to type the phrase that

completes this sentence; this scaffolded type of pumping is used primarily when material is

believed to be unfamiliar to students. Elaborating involves the tutor stating information that

the student has not supplied. Hints are used when the student is struggling with a question.

Finally, AutoTutor employs the strategy of direct correction when the student makes an

utterance that the system is confident contains shallow errors. This strategy is not used if the

system has low confidence in its assessment or if the student‘s utterance is judged to display

deep misconceptions that should be reasoned out rather than directly corrected.

The behavior of AutoTutor was informed by extensive studies of unskilled human

tutors; that is, the tutors were knowledgeable about the subject matter but had no training in

formal tutoring methods. Over several years, researchers videotaped and transcribed

approximately 100 hours of tutoring in domains such as undergraduate psychology and

middle school algebra. AutoTutor‘s short feedback immediately after student turns was based

on observing this behavior consistently with human tutors. AutoTutor‘s omission of an

explicit student model was also based on the tutoring studies; researchers noticed that tutors

did not appear to longitudinally model the students‘ knowledge in a sophisticated way, but

rather, that tutors responded on a turn-by-turn basis to the knowledge (or lack thereof)

displayed by the most recent student turn. The rich body of qualitative observations from

www.manaraa.com

25

tutoring studies served as the primary source of design decisions for AutoTutor; in fact, the

system designers often refer to it as a ―simulation of a human tutor.‖ However, as is the case

with most systems presented in the remainder of this section, the corpus analysis did not

involve constructing generative models of dialogue.

The Geometry Explanation Tutor. The Geometry Explanation Tutor was developed at

Carnegie Mellon University and extended with dialogue capabilities a previously existing

cognitive tutor (Aleven et al., 2001; Aleven et al., 2004). The goal of this research was to

support students‘ self-explanations of their actions (Chi, M.T.H. et al., 1994). As students

take problem-solving steps in the problem-solving pane, they must fill in a box with an

explanation for that problem-solving step. For incomplete or incorrect explanations,

Geometry Explanation Tutor engages students in restricted dialogues designed to elicit

explanations that are reasonably mathematically precise.

Following the cognitive tutor architecture, the Geometry Explanation Tutor traces the

students‘ solutions to a problem and provides hints and feedback depending on whether the

student‘s actions and explanations match correct or ―buggy‖ rules. Unlike Autotutor which

uses latent semantic analysis to process student input statistically, Geometry Explanation

Tutor parses student input into knowledge structures corresponding to rules of the geometry

domain. The tutorial strategy involves accepting student input that was correct and complete.

For incomplete or incorrect explanations, the tutor randomly selects from the list of violated

or missing rules and engages in remedial dialogue that involves asking the student a follow-

up question or giving advice on how to provide a better explanation. The student then enters

a new explanation and the process repeats.

During the design process of the Geometry Explanation Tutor, researchers collected a

data set of written student explanations on a paper test to reveal some of the language

processing challenges facing the system. These data revealed that the system would face

www.manaraa.com

26

error-ridden and very short student utterance input. Based on these data, researchers

manually identified a hierarchy of 149 explanation categories and designed tutor utterance

responses to the categories. The dialogue is shallow, involving only one tutor feedback turn

indicating correctness or the presence of errors for each student explanation, and the tutor

responses were not based directly on any human tutoring study.

Why2-Atlas. Researchers at the University of Pittsburgh have developed Why2-Atlas, a

tutorial dialogue system for qualitative physics (Jordan et al., 2006; VanLehn et al., 2002). In

this system, students are asked a qualitative physics problem and must write an essay to

answer the problem. After assessing the essay, the system engages the student in a dialogue

intended to give feedback, address misconceptions, and discuss missing explanations in the

student‘s original essay. After this dialogue, the student is asked to write a revised essay. The

process continues until the student‘s essay is judged acceptable.

 Why2-Atlas parses student essays into a set of propositions in first-order logic.

Explicit misconceptions create a tutor goal of remedying that misconception, while expected

propositions that were missing create corresponding tutor goals of eliciting the required

content. The tutorial dialogue for addressing misconceptions and eliciting required content

are conducted through Knowledge Construction Dialogues (KCDs), scripts that elicit lines of

reasoning from students by asking questions.

 Publications on the development of Why2-Atlas do not explicitly describe tutoring

corpora that informed the system‘s design. Instead, requirements were gathered from physics

tutors regarding the propositions required in each essay and the KCDs were implemented

accordingly to address erroneous and missing concepts.

CycleTalk. CycleTalk (Rosé, Aleven et al., 2004) is a dialogue system from Carnegie

Mellon University that tutors college-level thermodynamics. The tutoring strategy involves

www.manaraa.com

27

negotiating the problem-solving goals between tutor and student and allowing students to

pursue these goals within an exploratory learning environment, CyclePad, in which students

construct thermodynamic cycles and perform efficiency analyses. A goal of the project was

to determine the desired behavior of the CycleTalk system by analyzing corpora of tutoring

collected through a Wizard-of-Oz study with a human tutor. Qualitative analysis of the

Wizard-of-Oz corpus yielded several general system desiderata (Rosé, Torrey et al., 2004).

For example, it was observed that the system should be able to engage in activities including

supporting students‘ functional analysis of their designs and weighing tradeoffs between

alternate design choices.

 A tutorial dialogue system was implemented using KCDs as in Why2-Atlas. These

scripts were modeled after the human tutors from the Wizard-of-Oz study (Kumar et al.,

2006). The CycleTalk system was used not only to support individual learners but also to

provide adaptive support for pairs of students, who were found to learn significantly more

than students in the individual condition (Kumar et al., 2007).

ITSPOKE. ITSPOKE, developed at the University of Pittsburgh, engages students in spoken

dialogue for tutoring qualitative physics (Litman & Silliman, 2004). It is a speech-enabled

version of the Why2-Atlas text-based tutoring system. In ITSPOKE, students first type

responses to a qualitative physics problem, and ITSPOKE engages the students in spoken

dialogue to refine the original answer. During this spoken dialogue the system takes actions

such as providing feedback and prompting the student. When the dialogue has completed the

system asks the student to edit the original written essay. Rounds of spoken tutoring continue

until the system judges the student‘s essay to be acceptable.

 The tutoring behavior of ITSPOKE was not originally based on empirical corpora, but

rather, was provided by the Why2-Atlas tutoring system (Jordan et al., 2006; VanLehn et al.,

2002) described earlier in this section. However, in recent years extensive empirical

investigations have been undertaken in the context of ITSPOKE to refine its tutorial

www.manaraa.com

28

strategies. It has been found that detecting and responding to student uncertainty increases

the effectiveness of ITSPOKE (Forbes-Riley & Litman, 2009). Machine learning approaches

such as reinforcement learning have also been applied to corpora collected with human

students using ITSPOKE. These studies suggest that micro-level tutorial decisions, such as

whether to elicit a piece of information from a student or tell it directly, impact the

effectiveness of tutoring (Chi, M. et al., 2010). Additional empirical results demonstrate how

surface-level language features are associated with learning in both spoken and textual

dialogue (e.g., Litman et al., 2006; Purandare & Litman, 2008). Ongoing work with the

ITSPOKE system aims to explore ways in which the system can respond to student affect to

improve student learning.

ProPL. Developed at the University of Pittsburgh, ProPL is a tutorial dialogue system that

supports novice computer science students as they write pseudocode for a solution to an

introductory programming problem (Lane, 2004; Lane & VanLehn, 2005). Students make

design notes and write pseudocode in the problem-solving pane and carry on textual dialogue

with the system in the dialogue pane.

 ProPL considers student solutions as consisting of goals and plans, and for each of

these units that is recognized in the problem-solving pane, the system can employ a

Knowledge Construction Dialogue (KCD), a script that elicits a line of reasoning from the

student by asking a series of questions. If the system does not recognize a correct student

answer through identification of keyword phrases, another KCD for remediation is entered;

alternately, the system can make a bottom-out move, an utterance that provides the complete

answer to the question. The tutorial moves that comprise KCDs include pumping, pointing to

a relevant piece of information in the original problem statement, rephrasing a previously

asked question, or eliciting an observation from the student about the condition of the current

solution. Tutorial strategies encoded as KCDs also include hypotheticals, in which the tutor

www.manaraa.com

29

asks the student to consider possible scenarios that might cause the solution to fail, eliciting

abstractions, intended to request a more general answer to a previously asked question, and

concrete examples designed to set up tutor elaboration of a topic.

 The corpus study that informed ProPL‘s design consisted of 27 tutoring sessions

across 2 problems conducted with a single tutor. These corpora were used to identify

approaches and misconceptions of the students and to analyze the behavior of the tutor. The

discourse was manually segmented at the location of each top-level ―what‖ question with

which the tutor aimed to elicit the goal of the student; these segments were further

decomposed based on the location of second-level ―how‖ questions designed to elicit plans.

Facilitated by the fact that the system designer served as the tutor during corpus collection,

manual qualitative analysis of the tutoring corpora led to the extraction of tutoring rules,

which were then implemented as system behaviors.

BeeDiff. Researchers at the University of Edinburgh have developed the BeeDiff tutor, a

tutorial dialogue system that helps students solve symbolic differentiation problems

(Callaway et al., 2007; Dzikovska et al., 2006). Its predecessors were BEETLE and

BEETLE2 (Zinn et al., 2002), tutoring systems for the domain of basic electricity and

electronics. BeeDiff displays a differentiation problem to the student, who is then able to

work out a solution sequentially or input an answer immediately using an equation-editing

pane; in addition, students can ask questions in the textual dialogue pane. Unlike AutoTutor,

which uses latent semantic analysis, BeeDiff uses the TRIPS dialogue parser (Allen et al.,

2001), which extracts a domain-independent representation of the student‘s utterance. This

representation is mapped onto the domain of differentiation and is then passed to a domain

reasoner that assesses whether differentiation rules were correctly represented.

When the student makes a mistake, BeeDiff employs an adaptive feedback strategy

that depends on the student‘s performance. High performing students get vague feedback

www.manaraa.com

30

such as ―Not quite,‖ while weaker students receive more specific help that includes a hint or,

in the bottom-out case, the complete answer. Four levels of feedback are included, which

range from a complete answer to a content-free hint as illustrated above.

 BeeDiff‘s tutoring strategy is informed by a corpus of nineteen human-human tutorial

dialogues. These tutoring sessions were carried out with tutors and students in separate rooms

and communicating through textual dialogue; tutors viewed a synchronized version of the

students‘ problem-solving workspace. These dialogues were used to focus the system design,

such as how verbose the tutor should be and how prevalent was the use of inline equations in

the textual utterances. The dialogues were also manually annotated for ―task segments‖ such

as State Problem, Solve, and Tidy Up. Finally, the corpus was annotated with dialogue acts.

Binary transition diagrams were used to indicate the presence (or absence) of adjacent pairs

of dialogue acts. This analysis is comparable to the bigram analysis utilized in this

dissertation as a baseline model for predicting tutor moves.

iList. The iList tutorial dialogue system supports students in learning and applying basic data

structures and algorithms content in computer science (Fossati et al., 2008). The system

provides students with a problem and a data structure drawing, which the student may

modify to help solve the problem. Students write a computer program to solve the data

structure problem in the problem-solving pane. The system provides feedback within a

feedback pane, with hints produced by constraint-based modeling which can identify student

mistakes.

 A major goal of the iList project was to define the system‘s behavior in an empirically

grounded way. One corpus analysis revealed that the frequency of positive tutorial feedback

was correlated with learning. This finding was used to modify the approach of iList, which

originally provided mostly negative feedback because this feedback is more straightforward

to implement with the chosen approach of constraint-based modeling (Fossati et al., 2009).

www.manaraa.com

31

The constraint-based model was learned as a Markov chain based on the corpus of past

student interactions (Fossati et al., 2010).

All of the tutorial dialogue systems discussed in this section aim to engage students in

rich natural language dialogue in support of a learning task. As a group, the systems have

important limitations with respect to development time and effectiveness, as discussed

below. The work in this dissertation aims to address those limitations with data-driven

techniques.

Today‘s tutorial dialogue systems generally required a large amount of development

time: several hundred hours per hour of tutoring instruction (Aleven et al., 2009). As such,

these systems provide tutoring for only a small number of topics. Due in part to this

limitation, tutorial dialogue systems have never achieved the effect sizes observed with

expert human tutors over the course of an academic term (Bloom, 1984). Instead, the effect

sizes that have been observed with tutorial dialogue systems are often on par with ordinary

(not expert) human tutors (Van Lehn et al., 2008).

As discussed above, the extent to which corpora of human dialogue have historically

been used to inform the behavior of each system is limited. The disconnect between effective

human tutoring and the implemented behavior of tutorial dialogue systems may be partly

responsible for the systems‘ less-than-optimal effectiveness. Recent research within the

contexts of projects such as CycleTalk, ITSPOKE, and iList described above made a step

toward data-driven tutorial dialogue system authoring by applying more extensive corpus-

based techniques than had previously been utilized within the Intelligent Tutoring Systems

community. The work in this dissertation goes one step farther by inducing a model of

tutorial strategies at the dialogue act level directly from a corpus. Furthermore, the current

models leverage hidden dialogue state, a novel way to potentially capture tutorial dialogue

modes automatically.

www.manaraa.com

32

 New dialogue structure modeling techniques that facilitate data-driven authoring of

tutorial dialogue system behavior may allow tutoring systems to more closely reflect the

behavior of the most effective human tutors, increasing the systems‘ flexibility and

robustness. Data-driven system development may also allow systems to cover more topics

and therefore provide longitudinal, effective support to students. Sections 2.3 and 2.4 discuss

these data-driven dialogue management techniques as they have been reported in the Natural

Language Dialogue literature.

2.3 User Utterance Interpretation in Dialogue Systems

For natural language dialogue systems, including tutorial dialogue systems, a central

challenge is interpreting users‘ input. This interpretation involves numerous levels of natural

language understanding; for example, in spoken dialogue systems, automatic speech

recognition is a challenging problem in itself. It focuses on simply identifying the words that

were spoken. Beyond low-level word understanding, interpreting the user‘s input in dialogue

involves identifying the dialogue act, or communicative purpose (e.g., asking a question,

giving a command) of each utterance. Dialogue acts (Austin, 1962; Jurafsky & Martin, 2008)

provide a valuable intermediate representation that can be used for dialogue management.

A variety of dialogue act classification approaches have been investigated in the

Natural Language Dialogue literature. These techniques have utilized both sequential

approaches and vector-based classifiers. Sequential approaches (Stolcke et al., 2000) often

treat dialogue as a discrete-time Markov chain, in which an observation depends on a single

preceding observation (Jurafsky & Martin, 2008; Levin et al., 2000). It is known that the

first-order Markov assumption does not strictly hold in natural language dialogue because of

the potential dependence of each observation on the full dialogue history. However, because

of the strong local dependence that has been observed in dialogue and because of the models‘

computational tractability, Markov models such as first-order observed Markov models (also

www.manaraa.com

33

known as bigram models) and Markov decision processes have proven useful in a wide

variety of dialogue applications (Bangalore et al., 2008; Forbes-Riley & Litman, 2005;

Forbes-Riley et al., 2007; Levin et al., 2000; Young et al., 2009).
7
 HMMs are an example of

these sequence-based models, and they model uncertainty within a doubly stochastic

framework (Rabiner, 1989). An introduction to HMMs is provided in Section 6.1.

Vector-based approaches to dialogue act classification, such as maximum entropy

modeling, frequently take into account a variety of lexical and syntactic features of local

utterance context.
8
 Many vector-based classifiers also leverage structural features such as

dialogue act history and task/subtask history. Work by Bangalore et al. (2008) on learning

the structure of human-human dialogue in a catalogue-ordering domain (also extended to the

Maptask and Switchboard corpora) utilizes features including words, part of speech (POS)

tags, supertags, and named entities, and structural features including dialogue acts and

task/subtask labels when applicable. To perform incremental decoding of both dialogue acts

and task/subtask structure, they take a greedy approach that does not require the search of

complete dialogue sequences. The models reported in this dissertation also perform left-to-

right incremental interpretation and prediction with a greedy approach. For student dialogue

act classification (Chapter 7) the feature vectors differ from the aforementioned work slightly

with respect to lexical and syntactic features and notably in the addition of a set of hidden

dialogue state features generated by a separately trained HMM.

7
 A dialogue act classification model is only one component within a fully functional dialogue system. While

the dialogue act classification model may make a first-order Markov assumption, the dialogue system usually

does not; it stores and makes use of many aspects of the full dialogue history.

8
 Although vector-based approaches and sequence-based approaches make use of different techniques, both

approaches make an n-th order (often first-order) Markov assumption regarding the process being modeled.

Sequential Markov models make this assumption explicitly through conditional probability distributions.

Vector-based models, by requiring feature vectors to be finite and of fixed size, make the same assumption

implicitly.

www.manaraa.com

34

Recent work by Sridhar et al. (2009) has explored the use of lexical, syntactic, and

prosodic features for online dialogue act tagging; this work explores the notion that other

structural features could be omitted altogether from incremental left-to-right decoding,

resulting in computationally inexpensive and robust dialogue act classification. Although

textual dialogue does not feature acoustic or prosodic cues, this dissertation reports on the

use of lexical/syntactic features alone to perform dialogue act classification.

Like Bangalore et al. (2008), the work reported in this dissertation treats task

structure as an integral part of the dialogue model. Other work that has taken this approach

includes the Amitiés project, in which a dialogue manager for a financial domain was derived

entirely from a human-human corpus (Hardy et al., 2006). The TRIPS dialogue system also

closely integrated task and dialogue models, for example, by utilizing the task model to

facilitate indirect speech act interpretation (Allen, Ferguson et al., 2001). Work on the

Maptask corpus has modeled task structure in the form of conversational games (Wright

Hastie et al., 2002). Recent work in task-oriented domains has focused on learning task

structure from corpora with supervised (Bangalore et al., 2008) and unsupervised

(Chotimongkol, 2008) approaches. Emerging unsupervised methods, such as for detecting

actions in multi-party discourse, also implicitly capture a task structure (Purver et al., 2006).

The domain of tutoring introductory programming differs from all the task-oriented

domains discussed above in that the dialogues center on the user‘s creation of a standalone

artifact through a separate, synchronous stream of user-driven task actions. To illustrate,

consider a catalogue-ordering task (Bangalore et al., 2008) in which one subtask is to obtain

the customer‘s name. The fulfillment of this subtask occurs entirely through the dialogue,

and the resulting artifact (a completed order) is produced by the system. In contrast, our task

involves the user constructing a solution to a computer programming problem. The

fulfillment of this task occurs partially in the dialogue through tutoring, and partially in a

separate synchronous stream of user-driven task actions about which the system must reason.

www.manaraa.com

35

To deal with this complexity, task actions and dialogue acts are integrated into a shared

sequential representation. Additionally, task events and hidden dialogue state features are

encoded in feature vectors for classification.

2.4 Move Selection in Dialogue Systems

Like the dialogue act classification work mentioned in Section 2.3, much of the data-driven

research on selecting dialogue system dialogue moves relies on a Markov assumption (e.g.,

Levin et al., 2000; Chi, M. et al., 2010). Although this assumption is not strictly true in real

world dialogue data because a long history of dialogue moves may influence the current

observation, the Markov assumption has proven useful in numerous dialogue modeling

applications due to its computational tractability and the relatively large amount of variation

captured within a short window of dialogue history. When a first-order Markov model is

used, each observation is assumed to depend only on the preceding observation; models that

consider pairs of dialogue moves in this way are also called bigram models.

Dialogue is often treated as a Markov decision process (MDP) or partially observable

Markov decision process (POMDP) and then reinforcement learning (RL) is applied to derive

optimal dialogue policies (Frampton & Lemon, 2009). Sparse data and large state spaces can

pose serious obstacles to RL, and recent work aims to address these issues with novel

approaches to user simulations (Ai et al., 2007), combining supervised and reinforcement

learning techniques (Henderson et al., 2008), and constraining the state space with

information-state update rules (Heeman, 2007). Another approach involves partitioning the

state space to form equivalence classes when the data do not support further distinctions

(Young et al., 2009).

For tutorial dialogue, RL has been applied for feature selection with the goal of

selecting a state space representation that best facilitates learning an optimal dialogue policy

(Tetreault & Litman, 2008). RL has also been used for comparing specific tutorial dialogue

www.manaraa.com

36

tactic choices, such as whether to tell a student the next step during tutoring, or whether to

elicit the student‘s hypothesis (Chi, M. et al., 2008).

While RL learns a dialogue policy through exploration, the work in this dissertation

assumes that a flexible, good (though possibly not optimal) dialogue policy is realized in

successful human-human dialogues. This policy can be extracted by learning a model that

predicts human tutor actions within a corpus. Using human dialogues directly in this way has

been the focus of work in other task-oriented domains. For example, in the Amitiés project, a

dialogue manager for a financial domain was derived entirely from a human-human corpus

(Hardy et al., 2006). Work by Bangalore et al. (2008) on learning the structure of human-

human dialogue in a catalogue-ordering domain (also extended to the Maptask and

Switchboard corpora, which involve giving directions and conversational speech,

respectively) utilizes a variety of lexical, syntactic, and task features to perform incremental

decoding of the dialogues, including predicting system (customer service agent) dialogue

moves. Like the parse-based models of Bangalore et al., the hierarchical hidden Markov

models (HHMM) in this dissertation explicitly capture the hierarchical nesting of tasks and

subtasks in the domain (Chapter 8). While their parse-based model constitutes a learned

model of task structure, the HHMM in this work treats task/subtask structure as given.

However, in contrast to Bangalore et al.‘s results, the hierarchical models described here

outperformed flat models in terms of accuracy for predicting system dialogue acts.

For tutorial dialogue, there is compelling evidence that human tutoring is a valuable

model for extracting dialogue system behaviors. Over the course of its rich history, the

CIRCSIM-TUTOR project utilized corpora of both expert and novice tutoring to inform the

system‘s behavior, and machine learning rule extraction approaches were used for identifying

tutor strategies (Evens & Michael, 2006). Using bigram models, Forbes-Riley et al. utilized a

corpus of human tutoring to derive a model for responding to student uncertainty, and this

model has subsequently been shown effective for improving tutoring outcomes (Forbes-Riley

www.manaraa.com

37

et al., 2007; Forbes-Riley & Litman, 2009). This dissertation builds on the bigram work of

Forbes-Riley et al. by moving beyond first-order Markov models to consider HMMs and

HHMMs that capture hidden dialogue state to increase the predictive and classification

power of the models.

Other ongoing work that aims to develop tutorial dialogue system behavior in a data-

driven way is being conducted in the context of KSC-PAL, an intelligent tutoring system that

supports peer collaboration (Kersey et al., 2009). Like the introductory computer science task

involved in this dissertation, the computer science task that KSC-PAL supports involves the

creation of a separate learning artifact, in their case drawings of computer science data

structures. Events related to modifying this learning artifact are considered as unified

components of the dialogue management model.

www.manaraa.com

38

CHAPTER 3

Human Tutoring Studies

This project, which adopts a corpus-based methodology (Section 1.3), utilizes records of

human-human tutorial dialogue as the basis for exploratory analysis and machine learning of

predictive models. It was desirable for the corpora to consist of rich, naturalistic human

dialogue that centered on a course-embedded student learning task within an introductory

computer programming course. Three observational tutorial dialogue studies, two pilot

studies and one primary study, were conducted with human tutors and introductory computer

programming students. The studies yielded three textual dialogue corpora. All three of these

studies were exploratory in nature; that is, they were not designed experiments, but were

controlled studies conducted with the goal of producing a corpus of rich, natural language

tutorial dialogue in the domain of introductory computer programming. Another important

goal was for the tutoring to produce positive student learning gains as measured from pre-test

to post-test, an outcome that was confirmed in learning gain analysis after the studies were

complete (Sections 5.1-5.3). The study process and materials underwent iterative refinement.

Software and instruments to measure motivation and learning were piloted in the first two

studies, and then utilized in the final and largest study. Study I was conducted in the Fall

semester of 2006, Study II was conducted in the Spring semester of 2007, and Study III, the

main study, was conducted in the Spring semester of 2008. The remainder of this chapter

describes the three tutoring studies.

www.manaraa.com

39

3.1 Software

Tutors and students collaborated remotely through textual dialogue from separate rooms.

This remote collaboration was made possible by RIPPLE, a software tool designed to facilitate

real time remote collaboration on programming projects (Boyer, Dwight et al., 2008).
9

RIPPLE features a synchronized problem-solving pane and a textual dialogue pane (Figure 3).

All programming and dialogue events are logged to a database.

Figure 3. Remote collaborative tutoring interface

9
 The RIPPLE system was implemented collaboratively with August Dwight and Taylor Fondren, whose

undergraduate research projects were funded by the STARS Alliance (www.starsalliance.org) and the NC State

University Department of Computer Science. Dright Ho, Lucas Layman, and Andy Sherriff provided valuable

technical support during the development project.

www.manaraa.com

40

The majority of RIPPLE‘s functionality for supporting synchronous views of a project

is provided by Sangam (Ho et al., 2004), an Eclipse plug-in for distributed pair

programming. Sangam relies on Eclipse
10

 for compilation and execution of students‘ source

code. When the student performs a single action, an event is generated and transmitted to the

tutors‘ workspace. The set of supported actions includes file system manipulation (e.g.,

creating and deleting files), editor operations (e.g., typing and highlighting) and program

launch (execution). To ensure robust operation over the network, RIPPLE regularly performs

integrity checks to assure the editor contents are identical for both users.

3.2 Student Participants

Student participants were volunteers who were enrolled in CSC 116, an introductory

computer science course titled ―Introduction to Computing – Java‖ at North Carolina State

University. Study I involved 35 participants, Study II involved 43 participants, and Study III

involved 61 participants.
11

 Students were compensated for participation through a small

amount of class credit that varied according to instructor preference. Data to establish the

representativeness of the students in terms of class grades are not available; however, over

half of the enrolled students each semester participated in the study. Participants included

students whose declared majors were mechanical, electrical, and computer engineering,

along with students majoring in computer science.

3.3 Tutors

Study I used six volunteer tutors: four graduate students, one female and three male, and two

advanced undergraduate students, both male. Study II used fourteen volunteer tutors: twelve

10
 http://www.eclipse.org

11
 Approved Human Subjects Research studies at North Carolina State University. Study I IRB #134-06-4;

Studies II –III IRB #344-07-10

www.manaraa.com

41

graduate students, two female and ten male, and two advanced undergraduates, both male.

Study III involved the two most effective tutors from the prior studies, that is, the tutors who

had the highest average student learning gains across Studies I and II. The tutors in Study III,

one female graduate student and one male upper-division undergraduate student, were paid

for their time. All tutors across the studies were between the ages of 19 and 30 and had a

minimum of one semester of experience as a tutor or teaching assistant. Two tutors in Study

II also had experience as classroom instructors. None of the tutors were involved as

instructors or teaching assistants with the course from which the participants were drawn.

Students‘ and tutors‘ identities were not revealed to each other before, during, or after the

tutoring sessions.

The tutor orientation consisted of a problem-solving session in which all the tutors

met to work through alternate solutions to the programming problem. In addition, tutors were

shown the student instruction video (described in Section 3.5) to familiarize them with the

starting knowledge of the student regarding the software being used. The student instruction

video also served as the tutor orientation to the software. Tutors were not instructed to use

any specific instructional approaches or tutorial strategies because the intent was for each

tutor to use his or her own strategies to accomplish the goal of helping students complete a

programming exercise while ensuring that students developed an understanding of the

general concepts used in the solution. In this way, the data represent a sampling of

naturalistic human tutoring for introductory computer science.

3.4 Problem-Solving Task

The studies began in the eighth week of each semester, and the problem-solving task given to

students was designed to be commensurate with their classroom and laboratory exposure at

the time. Studies I and II used a programming exercise taken from the standard laboratory

manual for the course (Appendix A). The programming exercise focused on using array data

www.manaraa.com

42

structures along with loop constructs. Students were provided a partial solution that included

an (initially empty) graphical display of the generated results. Students were required to

complete three code modules to solve the programming problem. Based on tutor feedback

from the previous two studies, which indicated the programming problem was unnecessarily

confusing for students, Study III used a slightly simplified programming exercise (Appendix

B). The latter was designed with social relevance in mind, a property thought to be implicitly

motivational to students (Layman et al., 2007). As in the previous studies, the programming

exercise focused on using array data structures and loop constructs to complete three

modules. Because this programming exercise was handcrafted for the tutoring study, it was

tested in the semester prior to Study III with a small group of volunteers who were enrolled

in CSC 116 (the same course used for all three tutoring studies) or CSC 216 (the next course

in the programming sequence). Anomalies in the problem description, code scaffolding, and

the corresponding pre-test/post-test were corrected prior to deploying the exercise in Study

III.

3.5 Procedure and Instruments

Upon arrival, students completed a pair of written instruments consisting of survey items on

the student‘s motivation to study computer science, including the student‘s self-efficacy

(Bandura, 2006). In Study I, these data were the first to be collected for each participant; in

Studies II and III, participants were also asked to complete an electronic survey containing

several demographic and psychometric instruments prior to arriving for the study. The

demographic instrument collected students‘ ethnicity, expected graduation date, and major.

Psychometric instruments included the Achievement Goals Questionnaire (Elliot &

McGregor, 2001) and the Interpersonal Reactivity Index (Davis, 1983).

 Student learning was assessed using pre- and post-tests. The pre-tests and post-tests

were developed expressly for the purposes of the project. The tests were iteratively refined

www.manaraa.com

43

between studies in an effort to make the questions more sensitive to differences in learning

that occurred over the course of the tutoring sessions. The multiple choice pre- and post-tests

for Studies I and II underwent no external evaluation (Appendix A); for Study III, the

pre/post-test consisting of free response questions (Appendix B) underwent formal review by

a panel of three independent subject matter experts with experience in teaching introductory

computer science.
12

 Upon completing the written instruments (including pre-test), students were seated at

a computer where they watched a short (3 minutes) instructional video describing RIPPLE,

illustrating how to create and run programs, and instructing the students to greet their tutors

through the textual dialogue interface immediately after the video ended. The students and

tutors interacted remotely while the students planned and implemented the solution to the

programming exercise. The choice to have students and tutors interact through remote typed

dialogue was to ensure that students and tutors remained anonymous to each other and that

all interactions were captured. The alternative formats would have been in-person tutoring or

remote spoken tutoring. In-person tutoring permits a wider bandwidth of communication

(e.g., facial expressions and gestures), but creating transcripts of video and capturing the

nonverbal communication would not have been feasible given the time frame of the projects.

Spoken remote tutoring would have restricted the use of nonverbal communication, but

might have compromised the anonymity of tutors or students and would also have required

extensive time in creating written transcripts for further analysis. The textual dialogue

platform was designed to behave similarly to mainstream instant messaging clients likely to

be familiar to the participants.

12
 The three experts were Dan Longo and Carol Miller (NC State University), and Dr. Chris Eason (Mercer

University).

www.manaraa.com

44

In Studies I and II, sessions were time-controlled at 50 and 55 minutes, respectively.

In Study III, students were permitted to work until completion of the programming exercise

or until one hour had elapsed. When the tutoring session reached its conclusion, a paper-

based post-survey and post-test with items analogous to the pre-survey and pre-test were

administered.

3.6 Tutorial Interaction

Tutors and students were not aware of each other‘s identity. No individual characteristics

including gender, ethnicity, age, or level of preparedness were disclosed to the tutor or the

student. This restriction was communicated to all participants ahead of time. In the rare event

that students inquired as to the tutor‘s identity, tutors were instructed to redirect the student

with a response such as, ―Sorry, we‘re supposed to talk only about the programming

exercise.‖ The need for this redirection arose infrequently in the studies, but was necessary

to ensure that student and tutor assumptions would be controlled to the fullest extent

possible.

In Study I, there were no restrictions placed on the construction of dialogue messages;

that is, while one user actively constructed a textual message, the other user was also

permitted to construct and send messages. This design choice was made because of its

consistency with the interface design of commercial instant messaging platforms familiar to

the student population. In these instant messaging platforms, if one user completes a new

message (possibly starting a new topic) while the other user is typing a response to the

previous topic, the chronological record of dialogue can appear inconsistent with respect to

the conversational structure. Human users deal with this phenomenon readily as the textual

dialogue unfolds in real time; however, the situation gives rise to analysis challenges because

researchers must ―untangle‖ the logs manually before analysis. To address this issue, the

dialogue interface was modified for Studies II and III to enforce strict turn taking. When a

www.manaraa.com

45

user was actively constructing an utterance in the textual dialogue interface, the other user

was not permitted to construct an utterance.
13

 However, the student was permitted to

continue working in the problem-solving window regardless of the status of the textual

dialogue interface.

3.7 Structure of Tutoring Corpora

As students and tutors interacted during the tutoring sessions, all dialogue and problem-

solving actions were recorded in a database. The complete record of tutoring therefore

involves both textual dialogue and task events. Students generated textual dialogue utterances

and task events; tutors generated only textual dialogue utterances. The structure of the

interleaved dialogue and task events within the database is shown in Table 1.

 In separate rounds of annotation, the dialogue and task events were manually tagged.

The individual keystrokes of task events as shown in Table 1 were aggregated to form

semantic problem-solving actions, and the dialogue utterances were labeled with dialogue

acts. The annotation is described in detail in the next chapter.

13
 An alternative approach, which involved time-stamping a textual dialogue message with the start of typing

rather than with the time of sending, was explored. However, this solution would still have allowed topics to be

introduced in an asynchronous way, which would have posed significant challenges to automatically modeling

the structure of the dialogues. In the free-response area of post-surveys, some students commented that they

found the strict turn-taking behavior to be restrictive; therefore, future work should explore alternatives to this

restriction.

www.manaraa.com

46

Table 1. Excerpt of corpus as structured in database
2007-03-28 17:47:45 Tutor Dialogue So, basically, if table[correction][i] == 0, we need to

draw a small bar
2007-03-28 17:47:50 Tutor Dialogue and if it’s 1 we draw a full bar.
2007-03-28 17:47:53 Tutor Dialogue make any sense?
2007-03-28 17:48:15 Student Dialogue ah,yes, I see.
2007-03-28 17:48:18 Student Task i
2007-03-28 17:48:19 Student Task f
2007-03-28 17:48:19 Student Task
2007-03-28 17:48:20 Student Task
2007-03-28 17:48:22 Student Task
2007-03-28 17:48:23 Student Task {}
2007-03-28 17:48:23 Student Dialogue Typing table is acceptable here?
2007-03-28 17:48:52 Student Task t
2007-03-28 17:48:54 Student Task a
2007-03-28 17:48:54 Student Task b
2007-03-28 17:48:55 Student Task l
2007-03-28 17:48:55 Student Task e
2007-03-28 17:48:55 Student Task []
2007-03-28 17:48:57 Tutor Dialogue That’s what I would do

www.manaraa.com

47

CHAPTER 4

Dialogue and Task Annotation

The observational tutoring studies described in Chapter 3 produced three corpora of task-

oriented tutorial dialogue. The RIPPLE tutoring environment (Section 3.1) recorded the

parallel textual dialogue and task event streams chronologically within a database, fully

capturing the interplay between the dialogue utterances and the students‘ task actions. Each

of the studies yielded a corpus with over five thousand dialogue moves and tens of thousands

of student programming actions.
14

 To perform exploratory analysis on, and subsequently

induce models over these corpora, they were annotated with dialogue acts and task/subtask

structure. An excerpt from Corpus III that illustrates the interleaved nature of the dialogue

and task, along with the type of annotation applied, is depicted in Figure 4. The remainder of

this chapter describes the dialogue act and task annotation schemes and processes.
15

14
 The task events were logged at the keystroke level because each keystroke, including deletions and

corrections, were considered relevant problem-solving events that should be considered in manual annotation.

Additionally, while a mechanism was available for dividing dialogue utterances into discrete events

(specifically, the users chose to press the ―Send‖ button), no such mechanism was available or desirable for

dividing student task actions automatically into semantic events.

15
 The dialogue act annotation schemes for the second pilot study and the main study drew heavily on a scheme

originally proposed by NC State graduate student Rob Phillips and refined in collaboration with NC State

graduate students Michael Wallis and William Lahti and Meredith College undergraduate student Amy Ingram.

The task annotation scheme was devised in collaboration with Rob Phillips and Amy Ingram.

www.manaraa.com

48

Time Stamp Dialogue Stream [Dialogue Act Tag] Task Task Tag
2008-04-11 18:23:45 Student: so do i have to manipulate the array this time?

[Q]
2008-04-11 18:23:53 Tutor: This time, we need to do two things [S]
2008-04-11 18:24:02 Tutor: first, we need to create a new array to hold the

changed values [S]
2008-04-11 18:24:28 i

1-a-i
BUGGY

2008-04-11 18:24:28 n
2008-04-11 18:24:28 t
2008-04-11 18:24:28 \sp
2008-04-11 18:24:35 \del
2008-04-11 18:24:36 \sp
2008-04-11 18:24:36 d

1-a-i
CORRECT

2008-04-11 18:24:36 o
2008-04-11 18:24:36 u
2008-04-11 18:24:36 b
2008-04-11 18:24:37 l
2008-04-11 18:24:37 e
2008-04-11 18:24:37 \sp
2008-04-11 18:24:39 []
2008-04-11 18:24:40 \sp
2008-04-11 18:24:42 n

1-a-ii
CORRECT

2008-04-11 18:24:42 e
2008-04-11 18:24:42 w
2008-04-11 18:24:43 \sp
2008-04-11 18:24:44 \del
2008-04-11 18:24:45 T
2008-04-11 18:24:46 \del
2008-04-11 18:24:54 T
2008-04-11 18:24:54 i
2008-04-11 18:24:54 m
2008-04-11 18:24:54 e
2008-04-11 18:24:54 s
2008-04-11 18:24:55 3
2008-04-11 18:24:57 ;
2008-04-11 18:25:11 Student: good? [RF]
2008-04-11 18:25:14 Tutor: good so far, yes [PF]
2008-04-11 18:25:29 Student: so now i have to change parts of the times

array right? [Q]
2008-04-11 18:25:34 Tutor: not quite [LF]
2008-04-11 18:25:57 Tutor: So, when you create a new object, like a String

for example, you'd say something like String s
= new String() [S]

Figure 4. Excerpt from Corpus III illustrating dialogue and task annotations

www.manaraa.com

49

4.1 Dialogue Act Annotation

Dialogue act annotation involves marking each dialogue move with a tag summarizing the

utterance‘s purpose (e.g., greeting, questioning, answering, disagreeing). For example, in

tutorial dialogue, common dialogue acts include asking questions (e.g., ―What kind of

variable should I use?‖), making assessments of knowledge (e.g., ―I don‘t know how to

declare an array‖), and acknowledging a previous statement (e.g., ―Okay‖). Because there is

no gold standard for annotating tutorial dialogue, the set of dialogue act tags was adapted

from annotation schemes from the dialogue analysis literature to capture the salient

characteristics of the corpora. Some dialogue acts were taken directly from a set applied in

the domain of qualitative physics (Forbes-Riley et al., 2005), while other tags were inspired

by a more expansive set of tags created for conversational telephone speech (Stolcke et al.,

2000) and another comprehensive, hierarchical scheme for task-oriented dialogue (Core &

Allen, 1997).

4.1.1 Establishing inter-annotator agreement for tagging schemes

Inter-annotator agreement studies are used to establish whether an annotation scheme can be

consistently applied by more than one human. These agreement studies usually involve a

primary annotator tagging an entire corpus, while a subset of the corpus is annotated

independently by a second tagger (Carletta, 1996; Litman & Forbes-Riley, 2006; Ohlsson et

al., 2007). The agreement between the two taggers is often measured using a Kappa

agreement statistic, which adjusts the absolute percentage agreement to account for the

agreement that would be expected by chance (Cohen, 1960). The Kappa statistic ranges from

-1 (no agreement) to 1 (perfect agreement). Negative values indicate that the annotator

agreement was worse than would be expected if both taggers guessed randomly, and positive

values indicate that the agreement was better than would be expected with random guessing.

www.manaraa.com

50

A widely used framework for interpreting the Kappa statistic is depicted in Figure 5 (Landis

& Koch, 1977).

Figure 5. Kappa statistic interpretation scheme

For each of the annotation schemes reported in this dissertation, the inter-annotator

agreement study proceeded as follows. First, the tagging scheme and its accompanying

tagging protocol were developed. Two annotators then applied the scheme collaboratively to

a small subset of the data during a first training round until they believed that they would be

able to apply the scheme consistently during independent tagging.
16

 If necessary, this training

round included refinement of the tagging scheme. The two annotators then applied the

scheme independently of each other to another small subset of the corpus during a testing

round, and their agreement was assessed by calculating the Kappa statistic. If the agreement

was not acceptably high (>0.70 for dialogue act tagging) then a second training and testing

round was conducted. Once a training and testing round produced an acceptably high

agreement statistic, the primary tagger proceeded with annotating the entire remainder of the

corpus and the secondary tagger annotated a previously unseen subset of 10%-30% of the

corpus. The final Kappa statistic for agreement was calculated using the subset of the corpus

that was tagged independently (not as part of a training and testing round) by both annotators.

16
 The author of this dissertation served as the primary dialogue act annotator for the two pilot corpora, and as

the secondary annotator for the main corpus. August Dwight and Rob Phillips performed secondary dialogue act

annotation for the pilot corpora, and Amy Ingram performed the primary dialogue act annotation for the main

corpus.

www.manaraa.com

51

4.1.2 Corpus I dialogue act annotation

The first pilot study produced the smallest of the three corpora, consisting of 5,034 dialogue

acts: 3,075 tutor turns and 1,959 student turns. The dialogue act tagging scheme drew from

two tutoring tag-sets (Forbes-Riley et al., 2005; Marineau et al., 2000) and one annotation

scheme for conversational speech (Stolcke et al., 2000). The set of dialogue act tags is

depicted in Table 2. The entire corpus was manually annotated by the author of this

dissertation, with a second researcher (a Computer Science undergraduate student)

annotating a subset of 19%, or 969 utterances selected with random stratified sampling by

tutor of complete tutoring sessions.
17

 This agreement study found that the inter-annotator

agreement was substantial, at κ=0.75.

4.1.3 Corpus II dialogue act annotation

The second pilot study, conducted in Spring 2007, produced Corpus II consisting of 4,864

dialogue moves: 1,528 student moves and 3,336 tutor moves. The set of dialogue act tags

was augmented for the second pilot study with division into two channels: a cognitive

channel and an affective/motivational channel. The cognitive dialogue acts refined the set

used for Corpus I by drawing heavily on a comprehensive hierarchical tagging scheme for

task-oriented dialogue in a travel domain (Core & Allen, 1997). The affective/motivational

dialogue acts drew from extensive studies of the motivational tactics of human tutors (Lepper

et al., 1993) and from a tagging scheme for student certainty (Forbes-Riley et al., 2007). The

tagging scheme applied to Corpus II is depicted in Table 3.

17
 While the two annotators had different levels of expertise with respect to dialogue analysis, this discrepancy

does not hinder the findings regarding the ability of two individuals to reliably apply the tagging scheme. In

fact, greater individual differences between annotators strengthen the favorable agreement statistics by

suggesting that a particular level of prior expertise is not needed to apply the tagging scheme.

www.manaraa.com

52

 All dialogue moves in the corpus were annotated by a single researcher, a Computer

Science graduate student, with a second researcher, the author of this dissertation, annotating

29%, or 1,418 moves, which were selected with random stratified sampling by tutor of

complete tutoring sessions. The resulting agreement statistics were κ=0.76 for the cognitive

channel and κ=0.64 for the motivational/affective channel, both indicating substantial inter-

annotator agreement.

www.manaraa.com

53

Table 2. Corpus I dialogue act annotation scheme

 Act Description Examples

St
ud

en
t o

r T
ut

or

TASK QUESTION (TQ) Questions about goals,
plans, and their ordering.

Where should we start?
Should we use an array?

CONCEPT QUESTION
(CQ)

Questions about domain
elements, concepts, or facts
that are not problem-specific.

How do I declare an
array?
I don’t know how to write
a loop.

ANSWER (A) Answers to task or concept
questions.

Yes/No.
We need to give it an
index.

ACKNOWLEDGEMENT
(ACK)

Positive acknowledgement
of a previous statement.

Okay.
Alright.

EXTRA-DOMAIN (EX) Not related to the computer
science discussion.

Sorry.
Nice working with you.

St
ud

en
t

REQUEST FEEDBACK
(RF)

Request for evaluative
feedback on completed or
proposed problem-solving
steps.

Should I do array[0]=1?
Does that look good?

SIGNAL NON-
UNDERSTANDING (SNU)

An indication that a previous
statement is unclear.

Kind of makes sense.
Not really.

STATEMENT (S) Assertion of fact. I am going to use a for
loop.
We need to initialize that
variable.

Tu
to

r

(UN)PROMPTED POSITIVE
FEEDBACK

Positive feedback. Good job.
Looks great.

(UN)PROMPTED
LUKEWARM FEEDBACK

Partly positive, partly
negative feedback.

You’re close.
The first part is right,
but…

HINT/ADVICE (HA) Problem solving or
conceptual hint or advice not
in answer to a direct
question.

Each digit is represented
by 5 bars.
Let’s move on.

REQUEST TO CONFIRM
UNDERSTANDING (RCU)

Request to confirm the
student’s understanding.

Does that make sense?
Are you with me?

www.manaraa.com

54

Table 3. Corpus II dialogue act annotation scheme

 Act Description Examples

C
og

ni
tiv

e
C

ha
nn

el

QUESTION (Q) Questions about goals, plans,
and domain concepts.

Where should we start?
How do I declare an array?

EVALUATING QUESTION
(EQ)

Questions that explicitly inquire
about the student knowledge
state or correctness of problem-
solving actions.

Do you know how to declare
an array?
Is that right?

STATEMENT (S) Declarative assertion. You need a closing bracket
there.
I am looking for where this
method is declared.

GROUNDING (G) Acknowledgement, thanks, other
conversational grounding.

Okay.
Alright.

EXTRA-DOMAIN (EX) Not related to the computer
science discussion.

Sorry.
Nice working with you.

POSITIVE FEEDBACK (PF) Unmitigated positive feedback
regarding problem-solving action
or student knowledge state.

Yes, I know how to declare
an array.
That is right.

LUKEWARM FEEDBACK
(LF)

Partly positive, partly negative
feedback.

Sort of.
Almost.

NEGATIVE FEEDBACK (NF) Totally negative feedback. No.
Actually, that won’t work.

M
ot

iv
at

io
na

l/A
ffe

ct
iv

e
C

ha
nn

el

CONFUSION (C) Indicates disorientation beyond
that indicated by negative
feedback.

I have no idea what to do.
I’m lost.

FRUSTRATION (F) Explicit expression of frustration. Grr!
This is so frustrating.

EXCITEMENT (E) Explicit expression of
excitement.

Sweet!
Cool!

PRAISE (P) Emphasizes a student’s
success. Goes beyond positive
feedback.

Great job on that part!
That’s perfect.

REASSURANCE (R) Intended to minimize a student’s
failure.

That part was hard.
Don’t worry about it.

OTHER EMOTION (O) Affective or motivational
utterance for which there is no
pre-defined tag.

Haha.
I’m sorry.

www.manaraa.com

55

4.1.4 Corpus III (main corpus) dialogue act annotation

For Study III, lessons learned in Studies I and II were used to create a modified dialogue act

tagging scheme designed to capture the aspects of the dialogue that were deemed most useful

from a dialogue system implementation perspective. For example, the low occurrence of

affective/motivational dialogue moves in Corpus II and the even lower occurrence of these

moves in Corpus III (based on preliminary manual analysis for the presence of

affective/motivational content) led to a cognitive-only dialogue act tagging scheme for this

corpus. This tagging scheme is depicted in Table 4. Inter-rater agreement for this tagging

scheme on 10% of the corpus was ĸ=0.80, indicating substantial agreement between the

primary annotator, an undergraduate Computer Science student, and the secondary annotator,

the author of this dissertation.

4.2 Task Annotation

The previous section focused on textual dialogue utterances sent between tutors and students.

In addition to dialogue, the tutoring sessions also involved students writing computer

programming code in Java to solve an introductory programming exercise, the task. The

students‘ programming keystrokes, including typing or deleting elements of their computer

program along with other actions as described in Section 3.1, comprise the task action event

stream. In the main corpus, the task event stream included 97,509 keystroke-level student

task events. The keystroke-level task events were manually aggregated into 3,793

task/subtask event clusters that were annotated for subtask structure and then annotated for

correctness as described below.

The task annotation scheme is hierarchical and reflects the nested nature of the

subtasks with the programming task (this programming exercise is provided in Appendix B).

A subset of the task annotation scheme is depicted in Figure 6. Each group of task events that

occurred between dialogue utterances was tagged for all its constituent subtask labels.

www.manaraa.com

56

Table 4. Corpus III dialogue act annotation scheme

Dialogue Act Description

Student
Relative

Freq.

Tutor
Relative

Freq.
ASSESSING
QUESTION (AQ)

Request for feedback on task or conceptual
utterance. . 204 . 107

EXTRA-DOMAIN (EX) Asides not relevant to the tutoring task. . 076 . 040

GROUNDING (G) Acknowledgement/thanks. . 261 . 057

LUKEWARM
ELABORATED
FEEDBACK (LCF)

Lukewarm assessment with explanation.

. 011 . 031

LUKEWARM FEEDBACK
(LF)

Lukewarm assessment of task action or
conceptual utterance. . 019 . 026

NEGATIVE
ELABORATED
FEEDBACK (NEF)

Negative assessment with explanation.

. 014 . 097

NEGATIVE
FEEDBACK (NF)

Negative assessment of task action or
conceptual utterance. . 045 . 017

POSITIVE
ELABORATED
FEEDBACK (PEF)

Positive assessment with explanation.

. 024 . 028

POSITIVE
FEEDBACK (PF)

Positive assessment of task action or
conceptual utterance. . 093 . 158

QUESTION (Q) Task or conceptual question. . 094 . 027

STATEMENT (S) Task or conceptual assertion. . 160 . 411

www.manaraa.com

57

Figure 6. Portion of hierarchical task annotation scheme

The human annotator aggregated the students‘ raw task (programming) keystrokes

and tagged the task/subtask hierarchy for each cluster. A second annotator tagged 20% of the

corpus in a reliability study for which one-to-one subtask identification was not enforced

(giving the annotators maximum flexibility to apply the tags). All unmatched subtask tags

were treated as disagreements. The resulting unweighted Kappa statistic at the leaves was

ĸ=0.58, indicating moderate agreement. However, we also observe that the sequential nature

of the subtasks within the larger task produces an ordinal relationship between subtasks. For

example, in Figure 6, the ―distance‖ between subtasks 1-a and 1-b can be thought of as ―less

www.manaraa.com

58

than‖ the distance between subtasks 1-a vs. 3-d because those subtasks are farther from each

other within the larger task. The weighted Kappa statistic (Artstein & Poesio, 2008) takes

into account such an ordinal relationship and its implicit distance function. The weighted

Kappa is ĸweighted=0.86, which indicates acceptable inter-rater reliability on the task/subtask

annotation.

Along with its tag for hierarchical subtask structure, each task event was also judged

for correctness according to the requirements of the task. Correctness categories are shown in

Table 5. The agreement statistic for correctness was calculated for task events on which the

two annotators agreed on the subtask tag. The resulting statistic for correctness was ĸ=0.80,

indicating substantial inter-annotator agreement.

Table 5. Task correctness annotation scheme
Task

Correctness
Category Description

CORRECT Fully satisfying the requirements of the learning task. Does not require
tutorial remediation.

BUGGY Violating the requirements of the learning task. Usually requires tutorial
remediation.

INCOMPLETE Not violating, but not yet fully satisfying, the requirements of the learning
task. May require tutorial remediation.

DISPREFERRED Technically satisfying the requirements of the learning task, but not
adhering to its pedagogical intentions. Tutors often choose to
remediate.

4.3 Other Types of Annotation

The dialogue act and task annotation described in Sections 4.1 and 4.2 serve as the basis for

the modeling contributions of this dissertation, which involve machine-learned models for

both user dialogue act classification and tutorial move selection. However, during the

www.manaraa.com

59

exploratory phases of the work, other annotations were applied either automatically or

manually. No inter-annotator agreement studies were conducted for these annotation projects.

4.3.1 Automatic heuristic annotation for student problem-solving correctness

An automatic heuristic annotation for correctness was applied to Corpus II and was used in

the exploratory analysis reported in Section 5.2. In this annotation, events were automatically

tagged using the following rule:

i) if a problem-solving action was a programming keystroke that survived until the

end of the session, then this event was tagged promising to indicate it was

probably correct;

ii) if a problem-solving act was a programming keystroke that did not survive until

the end of the session, then the problem-solving act was tagged questionable.
18

This heuristic is based on the process used in this work, i.e., in this tutoring context, students

solved the problem in a linear fashion and tutors did not allow students to proceed past a step

that had incorrect code in place. Finally, periods of consecutive scrolling were also marked

questionable because in a problem where the entire solution fits on one printed page,

scrolling was usually conducted in irrelevant source files included to support graphical output

of the programming exercise (See Appendix A). Because the student‘s solution did not

interface directly with these source files, scrolling through them was generally not a

productive problem-solving step. This heuristic may not hold in all cases of student scrolling

through peripheral files, and as such, is one limitation of the preliminary automatic task

annotation. This limitation does not extend to the manual annotation employed for the main

corpus.

18
 The automatic problem-solving action tagger was implemented collaboratively with Michael Wallis.

www.manaraa.com

60

4.3.2 Annotation for initiative

While dialogue act annotation involves marking a corpus at the level of dialogue turns,

another useful type of annotation entails marking the higher-level structure of the dialogue

with regard to which collaborator holds the initiative at a given point, according to the

following criteria. We distinguish STUDENT-INITIATIVE and TUTOR-INITIATIVE modes.

In STUDENT-INITIATIVE mode the student maintains control and direction over the

problem-solving effort. STUDENT-INITIATIVE mode is characterized by the following

activities:

• The student states his/her plan and (optionally) asks the tutor for feedback,

• The student reads the problem description or constructs a portion of the actual

solution independently, as indicated by no dialogue exchanged while the student is

conducting these problem-solving activities,
19

• The student asks content-based questions (e.g., ―I should start this index at 0,

right?‖) as opposed to content-free questions (e.g., ―What do I do now?‖).

In TUTOR-INITIATIVE mode, the tutor directs the problem-solving effort. Because the

user interface does not allow tutors to edit the students‘ solutions, TUTOR-INITIATIVE mode

does not involve the tutor actively constructing the problem solution. However, the tutor

often used the textual dialogue interface to actively guide and direct the student to take very

specific problem-solving actions. TUTOR-INITIATIVE mode includes the following activities:

• The tutor offers unsolicited advice or correction

• The tutor lectures on a concept

19
 Researchers were only present periodically during the studies, and therefore, during times that the student

appears to be reading the problem description, he or she may actually be engaged in off-task or other behavior.

This limitation should be addressed in future work by use of technology such as eye-trackers to more clearly

identify the focus of students‘ attention.

www.manaraa.com

61

• The tutor explicitly suggests the next step in problem solving, or

• The tutor poses questions to the student.

To illustrate the initiative modes, two excerpts are presented (Figure 7). The first excerpt

illustrates STUDENT-INITIATIVE mode. In this excerpt, the student asks a content-based

question indicating he/she knows the problem lies in a return statement. The tutor provides

an answer that the student acknowledges. Finally, the student spends five uninterrupted

minutes coding part of the problem solution. Lengthy periods of independent student work

are common in STUDENT-INITIATIVE mode. The second excerpt illustrates TUTOR-INITIATIVE

mode. In this excerpt, the tutor gives unsolicited advice and asks questions of the student.

The student spends a brief time repairing the problem solution, and the tutor once more

provides unsolicited feedback. As illustrated in this excerpt, brief periods of student work

interspersed with frequent dialogue are common in TUTOR-INITIATIVE mode.

Tags at the level of initiative can span many individual dialogue acts. Since the

corpora consist of dialogue turns interleaved chronologically with student problem-solving

actions, tags for initiative can also span contiguous sections of textual dialogue and student

problem-solving. The two tags of STUDENT-INITIATIVE and TUTOR-INITIATIVE were manually

applied in an exploratory study that did not feature inter-rater reliability tagging.

www.manaraa.com

62

STUDENT-INITIATIVE Mode
Student: What am I not typing right in the return statement?
Tutor: You only need to return the identifier.
Tutor: In other words, you just need to return newTimes.
Student: Ok.

[Student works independently for 5 minutes.]

TUTOR-INITIATIVE Mode
Tutor: Hmm, that doesn’t look quite right.
Tutor: Do you see the projected array output?
Student: Yes.
Tutor: It looks like it’s only getting the first value.
Tutor: So your loop must be stopping before it’s done with its work.
Tutor: Do you see what might be causing that?

[Tutor-led conversation continues.]

Tutor: But it’s coming out 1. 0 instead of 4. 3.
Tutor: Anything else look wrong on the graph, compared with the instructions?
Student: The second bar is not right.
Tutor: I think fixing the length might be the only thing you need to change.

[Student works for 10 seconds.]

Tutor: Much better.
Student: Yeah!!

Figure 7. Excerpt from STUDENT-INITIATIVE and TUTOR-INITIATIVE modes

www.manaraa.com

63

CHAPTER 5

Exploratory Analysis of Tutorial Dialogue Corpora

To work toward the goal of creating a highly effective, data-driven tutorial dialogue system,

it was essential to explore how tutorial phenomena from the literature manifested within the

domain of introductory computer programming. This chapter describes the exploratory

analyses that were conducted prior to utilizing the corpora to machine learn statistical

dialogue act classifiers and predictive models of tutor moves. In addition to informing

subsequent modeling approaches, these exploratory analyses hold intrinsic value for

illuminating pedagogical phenomena in task-oriented tutoring with respect to cognitive,

motivational, and affective outcomes, and for furthering the state of knowledge regarding

how students come to understand computing.

5.1 Tutorial Adaptation to Student Characteristics

Results from Corpus I, collected during the first pilot study, suggest that tutors adapt in

specific ways to student characteristics (Boyer, Vouk et al., 2007). The student

characteristics considered in this section include 1) incoming knowledge level as measured

by pre-test, 2) self-efficacy as measured on the pre-survey (Appendix A), and 3) gender.

Although no student characteristics were explicitly revealed to the tutors, the tutorial

dialogues with low pre-test students differ from those of students with high pre-test, and

significant differences in dialogue profile also emerge between low and high self-efficacy

students and between students of different genders.

Overall, the tutoring sessions in Study I were effective: on average, students scored

13 percentage points higher on the post-test than the pre-test. This average learning gain is

www.manaraa.com

64

statistically significant (p<0.0001 using a t-test with 34 DF, SD=0.12) and the effect size is

1.08.
20

 The self-efficacy measure was obtained from a pre-survey item in which students

were asked to rate how certain they are, on a scale of 0-100, that they could complete a

simple programming exercise on their own. The items used to measure computer science

self-efficacy are based on Bandura‘s widely utilized domain-specific self-efficacy scale

(Bandura, 1997).

 For each student dialogue session, the relative frequency of each dialogue act was

computed as the ratio of the number of occurrences of that dialogue act to the total number of

dialogue acts in the session. The relative frequency of each dialogue act was then computed

for the following three partitions of students: high pre-test and low pre-test students, high

self-efficacy and low self-efficacy students, and female and male students. Figure 8 presents

two sample annotated dialogue excerpts from the corpus.

In Dialogue Excerpt A, the tutor interacts with a low pre-test student, Student A,

whose pre-test score was well below the median. The structure of Dialogue A illustrates

many features commonly seen with low pre-test students. Student A responds to the tutor‘s

first question with an unsure answer. After receiving a hint from the tutor, Student A types a

proposed problem-solving step into the dialogue interface before implementing it in the

problem-solving environment. This pattern of receiving a hint and then requesting feedback

repeats. It appears that Student A, who also happens to be in the low self-efficacy group, in

addition to being in the low pre-test group, seeks to establish confirmation of his proposed

plan before proceeding to implementation.

In contrast to Dialogue A, Dialogue B illustrates some common characteristics of

dialogues with high pre-test students. Student B asks a specific question and after receiving

20
 This effect size is computed as difference in pre-test mean and post-test mean divided by standard deviation

of pre-test.

www.manaraa.com

65

tutorial advice begins problem-solving work. Student B does not type the proposed problem-

solving step into the dialogue interface to obtain feedback from the tutor; rather, the student

proceeds directly to implementation.

Dialogue Excerpt A Dialogue Excerpt B
Tutor: Do you know how to do that? [TQ]
Student: Not really. [A]
Tutor: Well we first need a new String that will
hold zipCode’s string value. [HA]
Student: So String z = zipCode? [RF]
Tutor: Close. [PLF]
Tutor: Then you can set that string equal to
“”+zipcode. [HA]
Student: Ok so String z = “”+zipCode [RF]
Tutor: Yeah. [PPF]
Student: Then what? [TQ]
Tutor: Ok, so now we need somewhere to
keep the individual digits. [A]

Student: So I need an if for each digit? [TQ]
Tutor: One if should suffice, since it will be
called in each iteration. [A]
Tutor: You just need to know which element to
reference. [A]
Tutor: This would be done in the inner loop. [HA]
Student: Ok. [ACK]
(Student works for 2.5 minutes.)
Tutor: You’ve got the right idea. [UPF]
Student: Yeah, I had programmer’s block. [EX]
(Student works for 3 minutes.)
Tutor: Perfect. [UPF]

Figure 8. Excerpts from Corpus I illustrating low vs. high pre-test student dialogue

To determine whether inter-group differences in means were significant, t-tests were

performed. The relative frequencies and statistically significant differences (bold) are given

in Figure 9. It should be noted that the partitions are not independent; for example, high pre-

test students were more often in the high self-efficacy group. However, sample sizes do not

support multi-level analysis, so the following analysis examines each learner characteristic

individually.

www.manaraa.com

66

Dialogue Act

Student

Task Question (TQ)

Student

Concept Question (CQ)

Student Answer (A)

Student

Acknowledgement (ACK)

Student

Extra Domain (EX)

Request Feedback (RF)

Statement of Non-

Understanding (SNU)

Statement (S)

Unprompted Positive

Feedback (UPF)

Pre-test Performance Self-efficacy Level Gender

Relative Frequencies

Tutor

Task Question (TQ)

nhigh=17, nlow=18 nhigh=19, nlow=16 nfemale=7, nmale=28

High 11.2%

Low 12.1%

High 11.1%

Low 12.3%

Female 12.8%

Male 11.4%

High 6.7%

Low 6.4%

High 6.2%

Low 6.9%

Female 6.5%

Male 6.5%

High 0.7%

Low 0.9%

High 0.9%

Low 0.6%

Female 0.6%

Male 0.8%

Tutor

Concept Question (CQ)

High 1.1%

Low 1.0%

High 0.8%

Low 1.3%

Female 1.1%

Male 1.0%

High 6.9%

Low 5.7%

High 5.8%

Low 6.8%

Female 6.7%

Male 6.2%

Tutor Answer (A)
High 13.0%

Low 14.5%

High 13.2%

Low 14.4%

Female 14.8%

Male 13.5%

High 10.3%
Low 6.3%

High 9.1%

Low 7.3%

Female 8.3%

Male 8.2%

Tutor

Acknowledgement (ACK)

High 2.3%

Low 1.5%

High 2.5%
Low 1.2%

Female 1.2%

Male 2.1%

High 8.8%

Low 6.1%

High 8.6%

Low 6.0%

Female 6.0%

Male 7.8%

Tutor

Extra Domain (EX)

High 6.9%
Low 9.4%

High 8.5%

Low 7.8%

Female 8.4%

Male 8.2%

High 1.2%
Low 2.2%

High 1.6%

Low 2.0%

Female 2.8%
Male 1.5%

High 0.1%

Low 0.3%

High 0.2%

Low 0.2%

Female 0.3%

Male 0.1%

High 3.5%
Low 1.6%

High 3.5%
Low 1.4%

Female 1.2%
Male 2.8%

High 4.6%

Low 4.3%

High 4.5%

Low 4.4%

Female 3.8%

Male 4.6%

Prompted Positive

Feedback (PPF)

High 0.5%
Low 1.5%

High 0.9%

Low 1.3%

Female 1.7%
Male 0.9%

Unprompted Lukewarm

Feedback (ULF)

High 0.8%

Low 0.6%

High 0.7%

Low 0.6%

Female 0.7%

Male 0.7%

Prompted Lukewarm

Feedback (PLF)

High 0.1%
Low 0.6%

High 0.2%

Low 0.5%

Female 0.6%

Male 0.3%

Unprompted Negative

Feedback (UNF)

High 0.6%

Low 0.5%

High 0.7%

Low 0.4%

Female 0.5%

Male 0.5%

Prompted Negative

Feedback (PNF)

High 0.1%
Low 0.3%

High 0.0%
Low 0.4%

Female 0.3%

Male 0.1%

Hint/Advice (HA)
High 20.5%

Low 23.5%

High 20.8%

Low 23.5%

Female 20.5%

Male 22.4%

Request Confirmation

of Understanding (RCU)

High 0.1%
Low 0.9%

High 0.3%

Low 0.8%

Female 1.4%
Male 0.3%

T
u

to
r

S
tu

d
e

n
t

T
u

to
r

a
n

d
 S

tu
d

e
n

t

Figure 9. Dialogue profiles with statistically significant differences (p<0.05) in bold

www.manaraa.com

67

Students were divided into low pre-test and high pre-test groups, and into low self-

efficacy and high self-efficacy groups, based on whether the student‘s score fell below or

above the median incoming score of all participants on the pre-test or pre-survey,

respectively. Analyses yielded the following findings (Boyer, Vouk et al., 2007; Boyer,

Phillips et al., 2008b; Boyer, Phillips, Wallis et al., 2009b) (full quantitative results are

shown in Figure 9):

 High pre-test students made more acknowledgements, requested feedback less

often, and made more declarative statements than low pre-test students.

 Tutors paired with low pre-test students made more extra-domain statements,

gave more prompted feedback, and made more requests for confirmation of

understanding than tutors paired with high pre-test students.

 Students in the high self-efficacy group made more declarative statements, or

assertions, than students in the low self-efficacy group.

 Tutors paired with low self-efficacy students gave more negative feedback and

made fewer acknowledgements than tutors paired with high self-efficacy students.

 Women made more requests for feedback and fewer declarative statements than

men.

 Tutors paired with women gave more positive feedback and made more requests

to confirm understanding than tutors paired with men.

The results provide support for Hypothesis 1.1, which stated that ―Because human tutors

adapt their behavior based on student characteristics including skill level, self-efficacy, and

gender, the distribution of dialogue acts within tutoring sessions will be significantly

different when compared based on these characteristics.‖ Some tutor and student dialogue

acts did occur with significantly different frequencies across those student characteristics. For

example, tutors more often engaged in extra-domain conversation, provided additional

www.manaraa.com

68

feedback, and more frequently engaged in discussions to gauge students‘ level of

understanding when conversing with low pre-test or low self-efficacy students. These same

groups of students tended to request more feedback, make fewer declarative statements, and

make fewer acknowledgements.

5.2 Impact of Corrective Feedback

Although the learning gain results, as measured by difference in post-test and pre-test,

indicate that the tutoring sessions overall were effective at increasing students‘ knowledge

about the computing constructs involved in the programming exercise, the findings from the

first pilot study led naturally to the question of which tutorial adaptations were more or less

effective from either a cognitive or a motivational perspective. However, sample size, along

with limitations on the learning gain instruments of Study I, did not allow such fine-grained

analysis. The second pilot study was refined to address these issues.
21

The second pilot study generated Corpus II, which was tagged with a dialogue act

annotation scheme that included a cognitive and a motivational/affective channel (Section

4.1). The primary exploratory analysis conducted on this corpus examined the impact of

certain cognitive and motivational corrective strategies by focusing on dialogue acts utilized

by tutors immediately following plausibly incorrect student problem-solving action

(according to the heuristic correctness annotation described in Section 4.3). The motivational

strategies of praise and reassurance were compared with several types of cognitive feedback

to identify relationships with student cognitive and motivational outcomes. Of the 3,336 tutor

utterances, 1,243 occurred directly after a student problem-solving action that had been

21
 Recall that all three studies, including the two pilot studies and the main study, were exploratory in nature,

not confirmatory. There were no control groups involved. Future work should include control groups to gauge

the effectiveness of the tutoring treatment compared to another meaningful condition such as classroom

instruction or reading edited texts (VanLehn et al., 2007).

www.manaraa.com

69

tagged questionable. Because these utterances immediately followed student action that

presumably warranted correction, this subset of tutorial utterances served as the basis for

comparing corrective tutorial strategies. The frequency of these tutorial acts of interest is

given in Figure 10. The dialogue acts depicted in Figure 10 constitute the second component

of bigrams whose first component is the incorrect student action.

Figure 10. Dialogue acts that follow incorrect student task action

www.manaraa.com

70

 Overall, according to difference in pre-test and post-test, the forty-three tutoring

sessions were effective at increasing students‘ knowledge of computing constructs related to

the programming task. The mean learning gain from pre-test to post-test was 5.9%, a

statistically significant difference (p=0.038, t-test with pooled variance, 42 DF, SD=0.18),

though displaying a modest effect size of 0.33. For this study, cognitive benefit and

motivational benefit were considered. Students rated their own self-efficacy regarding the

subject matter significantly higher, 12.1% on average, after the tutoring session than before

(p=0.0021, t-test with pooled variance, 42 DF, SD=0.24) with effect size 0.5.

As in the first pilot study, the student outcomes of learning gain and self-efficacy gain

for each participant were partitioned into binary categories of High and Low based on the

median learning gain across all participants of 10.0%. Multiple logistic regression was then

applied, with the outcome category (High learning gain vs. Low learning gain and High self-

efficacy gain vs. Low self-efficacy gain) as the predicted variable, to determine whether a

relationship existed between corrective tutorial strategy and student outcomes. In these

logistic regression models, the number of occurrences of particular tutoring strategies were

treated as predictors; in addition, the students‘ incoming values of pre-test score and initial

self-efficacy rating were treated as predictors to control for their effects on the outcomes of

the session. All of the findings in the remainder of this section are related to Hypothesis 1.2,

which states that the frequency of some tutorial moves will be positively correlated with

motivational outcomes and negatively correlated with learning.

5.2.1 Presence of tutorial encouragement

Two categories of corrective tutorial utterances are first considered: those with and those

without explicit encouragement (i.e., praise or reassurance). Both these categories may, but

need not, contain cognitive feedback components. We restrict the analysis to only cognitive

feedback in the next subsection, and later omit all such feedback to consider standalone

www.manaraa.com

71

tutorial encouragement. A logistic regression model quantified the significant relationships

between tutorial encouragement and learning gain, revealing that after accounting for the

effects of pre-test score and incoming self-efficacy rating (both of which were significant in

the model with p<0.001), observations containing tutorial encouragement were 56%
22

 less

likely to result in high learning gain than observations without explicit tutorial

encouragement (p=0.001). On the other hand, tutorial encouragement was weakly linked to

self-efficacy gains, with explicit encouragement being 57% more likely to result in high self-

efficacy gain than tutorial responses that had no explicit praise or reassurance (p=0.054).

These models suggest that the presence of tutorial encouragement in response to

questionable student problem-solving action is weakly linked to self-efficacy gain but may be

associated with lower learning gain.

5.2.2 Adding encouragement to positive feedback

Corrective tutorial acts that were tagged as cognitive feedback were compared for relative

impact of those with and without explicit tutorial praise or reassurance. Because the co-

occurrence of cognitive feedback with reassurance was very low (n=2), we omit this strategy

from consideration and compare the two strategies of purely cognitive feedback and cognitive

feedback plus praise. A logistic regression model built as described above revealed that

observations in which the tutor used cognitive feedback plus praise were associated with

40% lower odds of high learning gain than observations in which the tutor used purely

cognitive feedback. No significant impact was observed on self-efficacy gain. These results

suggest that in response to questionable student problem-solving action, to achieve learning

22
 This value and its counterparts throughout this section represent logistic regression point estimates of odds

ratio (analogous to the regression coefficient in multiple linear regression). The accompanying p-value indicates

the level at which the predictor variable was significant in the model.

www.manaraa.com

72

gains, purely cognitive feedback is preferred over cognitive feedback plus praise, while self-

efficacy gain does not appear to be impacted either way.

5.2.3 Standalone tutorial encouragement

In this corpus, tutorial encouragement is sometimes encountered with no cognitive feedback

component; that is, the tutorial utterance is in no way aimed at giving substantive task-related

feedback, but instead, is aimed at the student‘s motivational or affective state through explicit

praise or reassurance. We now consider this tutorial strategy of standalone motivational acts.

Unlike the previous results that had a consistent (or no statistically significant) impact on

student sub-groups, and were therefore reported only for the general student population,

purely motivational statements appear to affect low and high self-efficacy students

differently. A separate logistic regression was run for the low initial self-efficacy and high

initial self-efficacy student groups. Among students with low incoming self-efficacy,

observations in which the tutor employed a standalone motivational act were 300% as likely

to be in the higher self-efficacy gain group as observations in which the tutor employed a

purely cognitive statement or a cognitive statement combined with encouragement (p=0.039).

In contrast, among students with high initial self-efficacy, a purely motivational tactic

resulted in 90% lower likelihood of being in the high self-efficacy gain group. Standalone

motivational acts showed no statistically different impact on learning gain compared to other

tutorial acts (p=0.268). This relationship held for both the low self-efficacy (p=0.216) and

high self-efficacy subgroups (p=0.441) with regard to impact on learning gain. These results

suggest that standalone praise or reassurance may be useful for increasing self-efficacy gain

among low initial self-efficacy students, but may be associated with lower self-efficacy gain

in high initial self-efficacy students. In addition, standalone praise or reassurance may not be

associated with higher learning gains.

www.manaraa.com

73

5.2.4 Superiority of positive cognitive feedback

We have seen evidence thus far that explicit tutor encouragement in the form of praise or

reassurance has mixed effects on learning and self-efficacy gains. We now consider the class

of purely cognitive tutorial moves, i.e., all tutorial acts that have no explicit encouragement

attached. The strategies under consideration here are positive, lukewarm, negative, and

neutral cognitive feedback plus tutorial questions. Because positive cognitive feedback

related similarly to each of the other types of cognitive moves, we forego pairwise

comparisons and instead contrast positive cognitive feedback against the group of all other

purely cognitive strategies. Chi-square analysis reveals positive cognitive feedback had a

significantly different impact on self-efficacy than other strategies (p=0.0028). A logistic

regression refined the relationship, revealing positive feedback resulted in 190% increased

odds of high student self-efficacy gain compared to the other cognitive strategies (p=0.0057).

Positive cognitive feedback did not differ significantly from other types of cognitive

strategies in a Chi-square comparison with respect to learning gains (p=0.390). This result

suggests that when dealing with questionable student problem-solving action, positive

cognitive feedback is preferable to other types of cognitive feedback for eliciting self-efficacy

gains, but this type of feedback is not found to be significantly associated with higher or

lower learning gains.

5.2.5 Discussion

This section has examined corrective feedback as defined by bigrams of plausibly incorrect

student actions and the subsequent tutorial move. The results provide evidence regarding

Hypothesis 1.2, which states that the frequency of some tutorial moves will be positively

correlated with motivational outcomes and negatively correlated with learning. The presence

of explicit tutorial encouragement was associated with the outcomes in this way, highlighting

www.manaraa.com

74

the tension that sometimes exists between cognitive and affective goals in tutoring (Section

2.1.2).

5.3 Tutor Initiative

The two pilot studies utilized a number of tutors; therefore, no single tutor interacted with a

large number of student participants. The third study was conducted using only the two tutors

who had been identified as highly effective in previous studies. In addition, these two tutors

had been observed in previous studies to have very different tutoring approaches. The

primary exploratory analysis of Corpus III examines the differences between these tutors

with respect to the conversational initiative, indicating which participant was directing the

dialogue at a given moment (Walker & Whittaker, 1990).

Because the level of student autonomy is thought to support increased motivation

(Dickinson, 1995), it was hypothesized that different levels of tutor initiative (that is, taking

control of the problem solving and dialogue)
3
 might be associated with differing student

outcomes. Results presented in this section explore whether there was a difference in learning

gains (measured by post-test score minus pre-test score) or self-efficacy gains (as measured

by self-efficacy post-survey score minus pre-survey score) between groups of students paired

with tutors who naturally took significantly different levels of initiative. There were sixty-one

tutoring sessions distributed approximately equally between the tutors. From these sessions,

fifteen were randomly selected for each tutor yielding a total of thirty sessions to be

annotated for initiative using the annotation scheme described in Section 4. 3.

 Each STUDENT-INITIATIVE and TUTOR-INITIATIVE tag was associated with a period of

time over which that instance of the tutoring mode occurred. The sum (in minutes) of all

3
 The software permitted a synchronized view of the student‘s problem solving, but tutors were not able to edit

the solution. Nonetheless, tutor initiative was present when the student took only programming actions that the

tutor had specifically directed, as described in Section 4.3.

www.manaraa.com

75

TUTOR-INITIATIVE periods in a given tutorial session divided by the total time elapsed during

the session yielded the percentage of the tutoring session that was spent in TUTOR-INITIATIVE

mode. One tutor took initiative 55% of the time on average, while the other tutor took

initiative 73% of the time. We refer to the tutor who took initiative 55% of the time as the

moderate tutor, while the other tutor is referred to as the proactive tutor. This difference in

approach is significantly different (p=0.029, t-test with pooled variances, 28 DF, SD=0.21).

One possible explanation for this difference could be that, despite the randomized assignment

of students to tutors, the moderate tutor may have been assigned a group of students with a

different level of preparedness than the proactive tutor. However, analysis of pre-test scores

do not suggest that this confounding factor was present. Average student pre-test scores were

79.5% for the moderate tutor and 78.9% for the proactive tutor, yielding no evidence of a

difference in student preparedness between the two treatment groups for the subset of

students considered in the initiative annotation (p=0.764, t-test with pooled variances, 28 DF,

SD=0.19).

 For each participant, the cognitive outcome of learning gain was calculated as post-

test score minus pre-test score. The mean learning gain across each set of fifteen annotated

student sessions was 6.9% for the moderate tutor and 6.0% for the proactive tutor, yielding

no evidence of improved learning gains associated with a particular level of student control

(p=0.895, t-test with pooled variances, 27 DF, SD=0.09).

Therefore, it will be assumed that in the present context the thirty sessions were

representative of the larger data set in terms of tutor initiative because the subset was selected

at random. Also, it is meaningful to consider all learning gains and assume each tutor took a

sufficiently uniform approach across all tutoring sessions. The mean learning gain for all

students tutored with the moderate approach was 6.9%, while the mean learning gain for the

proactive tutor was 8.6%. In this larger set of learning gains, there is still no evidence that

www.manaraa.com

76

one tutor was more or less effective than the other (p=0.569, t-test with pooled variances, 58

DF, SD=0.11).

Student self-efficacy
23

 gain was measured as the difference between post-survey and

pre-survey score on an item that asked students to rate their certainty, on a scale of 0-100,

that they have the capability to learn the necessary course material for their introductory

computer science class. A significantly different average self-efficacy gain was found

between student groups paired with the two tutors. Students who worked with the proactive

tutor had an average self-efficacy gain of less than one point from pre-survey to post-survey.

On the other hand, students paired with the moderate tutor had an average self-efficacy gain

of more than six points, which is significantly higher (p=0.047, t-test with pooled variance,

28 DF, SD=6. 5). This finding suggests that within the two levels of tutor initiative

considered here, affording the student more control may yield motivational benefit without

sacrificing cognitive outcomes. The results speak to Hypothesis 1.3, which states that the

level of autonomy given to students during tutoring will be correlated with learning and

motivational outcomes. There is no evidence that the level of autonomy is statistically

significantly correlated with learning, but there is a significant correlation between giving the

student more autonomy and facilitating gains in self-efficacy.

5.4 Discussion of Exploratory Findings

The exploratory findings suggest that computer science tutors naturally adapt to student

characteristics, and that particular tutorial strategies may be associated with higher student

learning or self-efficacy gains. These patterns complement research results from other

tutoring domains. For example, student utterances exhibiting reasoning and reasoning-

oriented questions posed by the tutor have been shown to be positively correlated with

23
 Recall that the term self-efficacy differs from confidence, as described in Section 1.5.

www.manaraa.com

77

learning in a human-computer corpus for qualitative physics, as has the introduction of new

concepts in the dialogue by students in a human-human corpus (Forbes-Riley et al., 2005).

Student deep reasoning questions (as opposed to questions that ask students to respond with a

simple fact) have also been associated with improved learning (Graesser et al., 2008), as has

the dialogue property of lexical cohesion, especially for low-performing students (Ward &

Litman, 2006).

The need for balancing cognitive and motivational strategies has also been recognized

in other domains; for example, the presence of cognitive feedback, as opposed to

motivational ―progress‖ feedback, was responsible for higher learning gains in experimental

versions of AutoTutor (Jackson & Graesser, 2007). On the other hand, the presence of

cognitive feedback lowered students‘ motivational ratings. Students working with modified

versions of a natural science tutor learned better when given cognitive rather than affective

feedback (Tan & Biswas, 2006). Finally, in a tutoring system for ecology, initially

unmotivated students were found to perform better with motivational adaptation and

feedback, while students who were already motivated did not benefit from the motivational

support (Rebolledo-Mendez et al., 2006).

These findings are valuable for informing the behavior of tutoring systems as well as

giving insight into the cognitive and motivational processes at work as students learn through

tutoring. However, the findings raise additional questions regarding specific tutoring

phenomena, such as the benefits of positive cognitive feedback, that can be explored further

through experimental investigation. This is a promising direction for future work.

Additionally, these exploratory analyses have provided a basic understanding of the structure

of task-oriented dialogue for introductory computer science, a foundation for the models

described Chapters 6 and 7.

www.manaraa.com

78

CHAPTER 6

Modeling Hidden Tutorial Dialogue State

with Hidden Markov Models

The notion that dialogue has an underlying unobservable structure that influences the

observed activity is widely accepted. A major goal of this dissertation is to explore whether

this hidden dialogue state can be discovered automatically with hidden Markov models

(HMMs), as evidenced by whether the HMM-learned structure correlates with student

outcomes and proves useful for the dialogue management tasks of user utterance

interpretation and system dialogue move selection. Before embarking on those tasks, it was

desirable to investigate whether the hidden dialogue states discovered by HMMs from the

tutoring corpora qualitatively resemble tutoring modes from the literature (Cade et al., 2008)

and whether these automatically extracted states are correlated with student learning. This

chapter describes that investigation.

Section 6.1 provides an introduction to Markov models (MMs) and HMMs.

Section 6.2 describes preliminary application of hidden Markov modeling to the corpus,

qualitative analysis of which suggests that HMMs can discover tutoring modes in an

unsupervised fashion (that is, with no labeled modes present in the training data). Section 6.3

examines an enhancement to these basic HMMs that involves leveraging information about

adjacency pairs, which are dialogue acts that tend to co-occur because the first act establishes

an expectation for the second act to follow (Schegloff & Sacks, 1973). Finally, Section 6.4

www.manaraa.com

79

presents findings regarding the correlation between student learning and the relative

frequency of the hidden states of the learned HMMs.
24

6.1 Introduction to Hidden Markov Models

To introduce hidden Markov models (HMMs) it is useful to first present an overview of first-

order Markov models (MMs). In the context of dialogue, a first-order Markov model is also

referred to as a bigram model (Forbes-Riley & Litman, 2005), and it serves as a useful

baseline for comparing the performance of more complex modeling approaches.

A Markov model that generates observation (state) sequence o1o2…ot is defined in the

following way. The observation symbols are drawn from the alphabet ∑={σ1, σ2, …, σM}, and

the initial probability distribution is Π=[πi] where πi is the probability of a sequence

beginning with observation symbol σi. The transition probability distribution is A=[aij],

where aij is the probability of observing state j immediately after state i. Figure 11 illustrates

the time-slice topology of an MM in the context of task-oriented dialogue modeling, where

the observations consist of dialogue acts and labeled subtask actions. Under the first-order

MM assumptions, each observation depends only on the immediately preceding observation.

Figure 11. Time-slice topology of first-order Markov model

While an MM assumes that the entire process is observable, a HMM explicitly

models unobservable, or hidden states, within a doubly stochastic structure (Rabiner, 1989).

For a first-order HMM, the observation symbol alphabet ∑={σ1, σ2, …, σM} is defined, along

24
 Sections 6.1 and 6.2 are based on HMM analysis of Corpus II from the second pilot study. Section 6.3 is

based on analysis of Corpus III from the main tutoring study.

www.manaraa.com

80

with a set of hidden states S={s1,s2,…,sN}. The transition and initial probability distributions

are defined analogously to MMs, except that they operate on hidden states rather than on

observation symbols. That is, Π=[πi] where πi is the probability of a sequence beginning in

hidden state si in S. The transition matrix is A=[aij], where aij is the probability of the model

transitioning from hidden state i to hidden state j. This framework constitutes the first

stochastic layer of the model, which can be thought of as modeling hidden, or unobservable,

structure. The second stochastic layer of the model governs the production of observation

symbols: the emission probability distribution is B=[bik] where bik is the probability of state i

emitting observation symbol k. The time-slice topology of the HMMs is depicted in Figure

12, where each qt is in S and each ot is in ∑. Each transition emits one and only one symbol.

Figure 12. Time-slice topology of first-order hidden Markov model

The standard machine learning algorithm for acquiring HMM parameters from a set

of observation sequences is the Baum-Welch algorithm (Rabiner, 1989; Bishop, 2006).

Baum-Welch is an instance of the general machine learning algorithm Expectation

Maximization, in which parameters are iteratively estimated and then refined until

convergence or until a stopping criterion is met. In the current work, this algorithm and the

Viterbi algorithm described below were implemented in Java.
25

25
 Eunyoung Ha implemented this software.

www.manaraa.com

81

 In addition to fitting the HMM parameters, an important HMM problem involves

identifying the best-fit sequence of hidden states that corresponds to a given observation

sequence. The Viterbi algorithm (Rabiner, 1989; Bishop, 2006; Jurafsky & Martin, 2008) is

used for this task. This algorithm operates over a lattice that includes all possible hidden

states at each possible time step in the observation sequence. Rather than explicitly

computing probabilities over the exponentially large space of paths through the lattice, the

algorithm leverages the Markov property of the model and retains only the path at a given

time step t and particular state q that had the highest probability until that point. At the final

time step T, one state will correspond to the most probable complete path. By backtracking

through the lattice from that most probable ending state, the algorithm identifies the most

probable hidden state at each time step.

6.2 Identifying Hidden Tutorial Dialogue States with HMMs

The primary impetus for selecting HMMs as the modeling framework was the notion that the

HMMs‘ hidden layer can explicitly capture tutorial dialogue modes, sometimes referred to as

strategies. The work presented in this section utilizes Corpus II and its set of cognitive

channel dialogue acts. The cognitive tags and their relative frequencies are shown in Table 6.

www.manaraa.com

82

Table 6. Modified dialogue act tagset for training HMMs on Corpus II

In this application of HMMs to the tutorial dialogue from Corpus II, the input sequences

were comprised of unigram tutorial dialogue acts augmented with tags indicating the speaker.

An example of such a sequence is, (GROUNDINGS, GROUNDINGT, QUESTIONS, STATEMENTT,

STATEMENTS, POSITIVEFEEDBACKT). These observed symbols are provided, without any

additional context regarding their meaning, as the input sequence for training HMMs. The

hidden variable is interpreted as the dialogue mode. Rather than specifying a priori the

number of dialogue modes, the best-fit number N of hidden states was learned from the

observed sequences during model training. The measure of fit is log-likelihood, which

indicates how likely the current model would be to generate the observed sequences. The log

www.manaraa.com

83

of the original likelihood value is taken to avoid numerical underflow. For each value of N,

seven models were randomly initialized and fine-tuned through ten-fold cross-validation on

the corpus to obtain an average log-likelihood value.
4
 A model containing N=6 hidden states

produced the best log-likelihood fit for the current corpus.
5
 Figure 13(A) presents the most

important components of the emission probability distribution B=[bik] for each hidden state

in the best-fit model. Probability values that are less than 5% are not shown in the diagram.

We interpret each state as a dialogue mode and assign intuitive state names by examining

the emission probability distribution of dialogue acts that occur in that state. Because State 0

is dominated by student evaluation questions, statements, and feedback, this state is

interpreted as Student Reflection mode. State 1 is dominated by extra-domain talk and

conversational grounding by both the student and tutor, so this state is interpreted as

Conversational Grounding/Extra-Domain mode. State 2 consists primarily of feedback from

the tutor, with some statements and tutor grounding, so this state is interpreted as Tutor

Feedback mode. State 3 is strongly dominated by tutorial statements, so this state is

interpreted as Tutor Lecture mode. State 4 emits primarily tutor statements and tutor

evaluation questions, so this state is interpreted as Tutor Probing and Lecture. Finally,

State 5 is dominated by a mixture of student questions with tutor statements and feedback, so

this state is interpreted as Interactive Collaboration mode.

4 Model parameters were learned with the Baum-Welch expectation maximization algorithm (Rabiner, 1989),

beginning with randomly-initialized parameters and then iterating until convergence. Training between five and

ten models is in keeping with standard practice when this random initialization approach is used. Ten-fold

cross-validation involves repeated systematic sampling of the data to partition into a 90% training set and a 10%

testing set.

5 Log-likelihood fit is a measure of how likely the observed sequences would be under a proposed model. The

number of hidden states, N, was allowed to range from 2 to 20, with the best fit produced by N=6.

www.manaraa.com

84

Figure 13. Unigram HMM

www.manaraa.com

85

The transition matrix A=[aij] in Figure 13(B) shows the probability of transitioning from one

hidden state to the next. This transition matrix represents the higher-level flow of dialogue.

For example, from State 0 (Student Reflection), the dialogue transitions with probability

0.712 to State 2 (Tutor Feedback) and with probability 0.107 to State 5 (Interactive

Collaboration). From State 2 (Tutor Feedback), the dialogue is most likely to transition to

State 3 (Tutor Lecture), with State 4 (Tutor Probing and Lecture) or State 5 (Interactive

Collaboration) also likely candidates for the next mode.

Because the learned HMM implies a best-fit sequence of hidden states for each

observed sequence of dialogue acts,
6
 it is possible to summarize the frequency of each

dialogue mode across the corpus as depicted in Figure 13(C). Not surprisingly, State 3 (Tutor

Lecture) occurs most frequently. This result is expected because in the current corpus, tutor

statements account for 40% of all dialogue acts.

While a mapping between sets of tutoring modes is difficult to achieve (Litman et al.,

2009), qualitative inspection of the learned HMM demonstrates that the hidden states do

resemble some tutoring modes or strategies from the literature. For example, State 0 (Student

Reflection) consists of the student‘s own feedback, statements, and evaluation questions.

Prior work has shown that eliciting this type of student reflection is a challenging task, even

with the one-on-one attention provided during tutoring (Graesser & Person, 1994). Such a

finding is consistent with State 0 accounting for only 8% of dialogue moves in the corpus.

The structures of State 1 (Conversational Grounding/Extra-Domain) and State 3 (Tutor

Lecture) do occur in a set of handcrafted tutoring modes for expert tutoring (Cade et al.,

2008). When comparing the experience level of tutors, those with less experience (which

describes nearly all the tutors from Corpus II on which this HMM was built) tend to lecture

the students more, and this finding is consistent with the large percentage of dialogue moves

6
 The Viterbi algorithm (Rabiner, 1989) was used to fit the best sequence of hidden states to each observation sequence.

www.manaraa.com

86

that fell in the Tutor Lecture state. State 5, Interactive Collaboration, resembles the

collaborative interaction known as Knowledge Co-Construction (KCC) (Hausmann et al.,

2004). Episodes of this highly interactive mode have been associated with higher learning.

Recently, the study of KCC interactions in domains such as data structures for computer

programming has yielded insights for the design of an intelligent peer-learning agent (Kersey

et al., 2009).

Although the HMM presented in this section offers descriptive insight into the tutorial

strategies occurring in the corpus, one serious limitation involves a well-known property of

HMMs, namely, that they can transition to a different hidden state at every time step. A

model that transitions between hidden states in the middle of a pair of dependent dialogue

moves (such as a question and answer pair) would violate an intuitive notion of dialogue

structure; therefore, the next section presents a method by which these dependent pairs of

dialogue moves, known as adjacency pairs (Schegloff & Sacks, 1973), are automatically

discovered and joined before building an HMM on the modified input sequences.

6.3 Leveraging Adjacency Pairs with Bigram HMMs

The importance of adjacency pairs is well established in natural language dialogue.

Adjacency pair analysis, also referred to as bigram analysis, has illuminated important

phenomena in tutoring (Forbes-Riley & Litman, 2005; Forbes-Riley et al., 2007). The

intuition behind adjacency pairs is that certain dialogue acts naturally occur together, and by

grouping these acts we capture an exchange between two dialogue participants in a single

structure. This formulation is of interest primarily because when treating sequences of

dialogue acts as a Markov process, with or without hidden states, the addition of adjacency

pairs offers a semantically richer observation alphabet. This section presents an HMM trained

on sequences of dialogue act adjacency pairs from Corpus II. As part of the evolution of the

methodology, this application of HMMs to Corpus II utilized a penalized log-likelihood

www.manaraa.com

87

measure, which reduces the measure of fit as the number of parameters increases. Penalized

log-likelihood measures are used to strike a balance between model complexity and model

fit. To facilitate direct comparison, this section describes both a unigram and a bigram HMM

fit using this penalized log-likelihood approach.

6.3.1 Adjacency pair identification

To find adjacency pairs we utilize a χ
2
 test to assess dependence of the categorical variables

acti and acti+1 for all sequential pairs of dialogue acts that occur in the corpus. Only pairs in

which the two speakers were different were considered; that is, speaker(acti) ≠

speaker(acti+1). Table 7 displays a list of all dependent adjacency pairs sorted by descending

(unadjusted) statistical significance; the subscript on each dialogue act tag indicates tutor (T)

or student (S).

An adjacency-pair joining algorithm was applied to join statistically significant

(p<0.01) pairs of dialogue acts into atomic units according to a priority determined by the

strength of the statistical significance. Dialogue acts that were ―left out‖ of adjacency pair

groupings were treated as atomic elements in subsequent analysis. Figure 14 shows the

adjacency-pair joining algorithm and Figure 15 illustrates the application of the algorithm on

a sequence of dialogue acts from the corpus.

www.manaraa.com

88

Table 7. Statistically significant adjacency pairs in Corpus II

acti acti+1
P(acti+1|
acti)

P(acti+1|
¬acti) χ2 val p-val

EVALUATINGQUESTIONS POSITIVEFDBKT 0.48 0.07 654 <0.0001

GROUNDINGS GROUNDINGT 0.27 0.03 380 <0.0001

EXTRADOMAINS EXTRADOMAINT 0.34 0.03 378 <0.0001

EVALUATINGQUESTIONT POSITIVEFDBKS 0.18 0.01 322 <0.0001

EVALUATINGQUESTIONT STATEMENTS 0.24 0.03 289 <0.0001

EVALUATINGQUESTIONS LUKEWARMFDBKT 0.13 0.01 265 <0.0001

QUESTIONT STATEMENTS 0.65 0.04 235 <0.0001

EVALUATINGQUESTIONT LUKEWARMFDBKS 0.07 0.00 219 <0.0001

QUESTIONS STATEMENTT 0.82 0.38 210 <0.0001

EVALUATINGQUESTIONS NEGATIVEFDBKT 0.08 0.01 207 <0.0001

EXTRADOMAINT EXTRADOMAINS 0.19 0.02 177 <0.0001

NEGATIVEFDBKS GROUNDINGT 0.29 0.03 172 <0.0001

EVALUATINGQUESTIONT NEGATIVEFDBKS 0.11 0.01 133 <0.0001

STATEMENTS GROUNDINGT 0.16 0.03 95 <0.0001

STATEMENTS POSITIVEFDBKT 0.30 0.10 90 <0.0001

STATEMENTT GROUNDINGS 0.07 0.04 36 <0.0001

POSITIVEFDBKS GROUNDINGT 0.14 0.04 34 <0.0001

LUKEWARMFDBKS GROUNDINGT 0.22 0.04 30 <0.0001

STATEMENTT EVALUATINGQUESTIONS 0.11 0.07 29 <0.0001

STATEMENTT QUESTIONS 0.07 0.05 14 0.0002

GROUNDINGT EXTRADOMAINS 0.07 0.03 14 0.002

GROUNDINGT GROUNDINGS 0.10 0.05 9 0.0027

EVALUATINGQUESTIONT EVALUATINGQUESTIONS 0.13 0.08 8 0.0042

www.manaraa.com

89

Sort adjacency pair list L by descending statistical significance

For each adjacency pair (act1, act2) in L

 For each dialogue act sequence (a1, a2, …, an)

 in the corpus

 Replace all pairs (ai=act1, ai+1=act2) with a new single symbol (act1act2)

Figure 14. Adjacency-pair joining algorithm

Figure 15. Example of input sequences before and after adjacency-pair joining

6.3.2 Model training

In keeping with the goal of automatically discovering dialogue structure, it was desirable to

find n, the best number of hidden states for the HMM, during modeling. To this end, seven

models were trained and ten-fold cross-validated, each featuring randomly initialized

parameters, for each number of hidden states n from 2 to 15, inclusive.
26

 The average log-

likelihood fit from ten-fold cross-validation was computed across all seven models for each

n, and this average log-likelihood ln was used to compute the Akaike Information Criterion, a

maximum-penalized likelihood estimator that prefers simpler models (Scott, 2002). This

modeling approach was used to train HMMs on both the dialogue act and the adjacency pair

input sequences.

26
 n=15 was chosen as an initial maximum number of states because it comfortably exceeded the hypothesized

range of 3 to 7 (informed by the tutoring literature). The Akaike Information Criterion (Scott, 2002) measure

steadily worsened above n = 5, confirming no need to train models with n > 15.

www.manaraa.com

90

The input sequences of individual dialogue acts contain 16 unique symbols because each

of the 8 dialogue act tags (Table 6) was augmented with a label of the speaker, either tutor or

student. The best-fit HMM for this input sequence contains nDA=5 hidden states. The

adjacency pair input sequences contain 39 unique symbols, including all dependent

adjacency pairs (Table 7) along with all individual dialogue acts because each dialogue act

occurs at some point outside an adjacency pair. The best-fit HMM for this input sequence

contains nAP=4 hidden states. In both cases, the best-fit number of dialogue modes implied by

the hidden states is within the range of what is often considered in traditional tutorial

dialogue analysis (Cade et al., 2008; Graesser et al., 1995).

Qualitatively evaluating the impact of grouping the dialogue acts into adjacency pairs

requires a fine-grained examination of the generated HMMs to gain an insight into how each

model interprets the student sessions. Figure 16(A) displays the emission probability

distributions for the dialogue act HMM. State 0DA, Tutor Lecture,
27

 is strongly dominated by

tutor statements with some student questions and positive tutor feedback. State 1DA

constitutes Grounding/Extra-Domain, a conversational state consisting of acknowledgments,

backchannels, and discussions that do not relate to the computer science task. State 2DA,

Student Reflection, generates student evaluation questions, statements, and positive and

negative feedback. State 3DA is comprised of tutor utterances, with positive feedback

occurring most commonly, followed by statements, grounding, lukewarm feedback, and

negative feedback. This state is interpreted as a Tutor Feedback mode. Finally, State 4DA,

Tutor Lecture/Probing, is characterized by tutor statements and evaluative questions with

some student grounding statements.

27
 For clarity, the states of each HMM have been named according to an intuitive interpretation of the emission

probability distribution.

www.manaraa.com

91

(A)

(B)

Figure 16. Dialogue act (unigram) and adjacency pair (bigram) HMMs

 The state transition diagram in Figure 16(A) illustrates that Tutor Lecture (0DA) and

Grounding/Extra-Domain (1DA) are stable states whose probability of self-transition is high,

at 0.75 and 0.79, respectively. Perhaps not surprisingly, Student Reflection (2DA) is most

likely to transition to Tutor Feedback (3DA) with probability 0.77. Tutor Feedback (3DA)

www.manaraa.com

92

transitions to Tutor Lecture (0DA) with probability 0.60, Tutor Lecture/Probing (4DA) with

probability 0.26, and Student Reflection (2DA) with probability 0.09. Finally, Tutor

Lecture/Probing (4DA) very often transitions to Student Reflection (2DA) with probability 0.82.

Figure 16(B) displays the emission probability distributions for the HMM that was

trained on the input sequences of adjacency pairs. State 0AP, Tutor Lecture, consists of

tutorial statements, positive feedback, and dialogue turns initiated by student questions. In

this state, student evaluation questions occur in adjacency pairs with positive tutor feedback,

and other student questions are answered by tutorial statements. State 1AP, Tutor Evaluation,

generates primarily tutor evaluation questions, along with the adjacency pair of tutorial

statements followed by student acknowledgements. State 2AP generates conversational

grounding and extra-domain talk; this Grounding/Extra-Domain state is dominated by the

adjacency pair of student grounding followed by tutor grounding. State 3AP is comprised of

several adjacency pairs: student questions followed by tutor answers, student statements with

positive tutor feedback, and student evaluation questions followed by positive feedback. This

Question/Answer state also generates some tutor grounding and student evaluation questions

outside of adjacency pairs.

To illustrate how the above models fit the data, Figure 17 depicts the progression of

dialogue modes that generate an excerpt from the corpus.

www.manaraa.com

93

Figure 17. Dialogue act sequences as generated by unigram and bigram HMMs

In both models, the most commonly occurring dialogue mode is Tutor Lecture, which

generates 45% of observations in the dialogue act model and around 60% in the adjacency

pair model. Approximately 15% of the dialogue act HMM observations are fit to each of

states Student Reflection, Tutor Feedback, and Tutor Lecture/Probing. This model spends the

least time, around 8%, in Grounding/Extra Domain. The adjacency pair model fits

approximately 15% of its observations to each of Tutor Evaluation and Question/Answer,

with around 8% in Grounding/Extra-Domain.

6.3.3 Qualitative comparison of unigram and bigram HMM

While the two models presented in this section were derived from the same corpus, it is

important to exercise caution when making direct structural comparisons. The models contain

neither the same number of hidden states nor the same emission symbol alphabet. It is

meaningful to note that the adjacency pair model with nAP=4 achieved an average log-

likelihood fit on the training data that was 5.8% better than the same measure achieved by the

www.manaraa.com

94

dialogue act model with nDA=5, despite the adjacency pair input sequences containing greater

than twice the number of unique symbols.28

The qualitative comparison begins by examining the modes that are highly similar in

the two models. State 2AP generates grounding and extra-domain statements, as does

State 1DA. These two states both constitute a Grounding/Extra-Domain dialogue mode. One

artifact of the tutoring study design is that all sessions begin in this state due to a compulsory

greeting that signaled the start of each session. More precisely, the initial state probability

distribution for each HMM assigns probability 1 to this state and probability 0 to all other

states.

Another dialogue mode that is structurally similar in the two models is Tutor Lecture,

in which the majority of utterances are tutor statements. This mode is captured in State 0 in

both models, with State 0AP implying more detail than State 0DA because it is certain in the

former that some of the tutor statements and positive feedback occurred in response to

student questions. While student questions are present in State 0DA, no such precise ordering

of the acts can be inferred.

Other states do not have one-to-one correspondence between the two models. State

2DA, Student Reflection, generates only student utterances and the self-transition probability

for the state is very low; the dialogue usually visits State 2DA for one turn and then transitions

immediately to another state. Although this aspect of the model reflects the fact that students

rarely keep the floor for more than one utterance at a time in the corpus, such quick dialogue

mode transitions are inconsistent with an intuitive understanding of tutorial dialogue modes

as meta-structures that usually encompass more than one dialogue turn. This phenomenon is

perhaps more accurately captured in the adjacency pair model. For example, the dominant

28
 This comparison is meaningful because the models depicted here provided the best fit among all sizes of

models trained for the same input scenario.

www.manaraa.com

95

dialogue act of State 2DA is a student evaluation question (EQs). In contrast, these dialogue

acts are generated as part of an adjacency pair by State 3AP; this model joins the student

questions with subsequent positive feedback from the tutor rather than generating the

question and then transitioning to a new dialogue mode.

6.3.4 Discussion

One promising result of this early work emerges from the fact that by applying hidden

Markov modeling to sequences of adjacency pairs, meaningful dialogue modes have emerged

that are empirically justified. The number of these dialogue modes is consistent with what

researchers have traditionally used as a set of hypothesized tutorial dialogue modes.

Moreover, the composition of the dialogue modes reflects some recognizable aspects of

tutoring sessions: tutors teach through the Tutor Lecture mode and give feedback on student

knowledge in a Tutor Evaluation mode. Students ask questions and state their own perception

of their knowledge in a Question/Answer mode. Both parties engage in ―housekeeping‖ talk

containing such things as greetings and acknowledgements, and sometimes, even in a

controlled environment, extra-domain conversation occurs between the conversants in the

Grounding/Extra-Domain mode.

Although the tutorial modes discovered may not map perfectly to sets of handcrafted

tutorial dialogue modes from the literature, it is rare for such a perfect mapping to exist even

between those sets of handcrafted modes. In addition, the HMM framework allows for

succinct probabilistic description of the phenomena at work during the tutoring session:

through the state transition matrix, we can see the back-and-forth flow of the dialogue among

its modes.

Automatically learning dialogue structure is an important step toward creating more

robust tutorial dialogue management systems. This section has presented two hidden Markov

models in which the hidden states are interpreted as dialogue modes for task-oriented tutorial

www.manaraa.com

96

dialogue. These models were learned in an unsupervised fashion from sequences of manually

labeled dialogue acts. The next section discusses work to identify associations between the

structure of learned HMMs and the student learning outcomes.

6.4 Correlations Between Hidden Dialogue State and Student Learning

The preliminary investigations into learning HMMs from corpora of tutorial dialogue and

examining their descriptive power qualitatively were conducted on Corpus II from the second

pilot study, as described in Sections 6.2 and 6.3. The qualitative examination suggests that

HMMs can discover tutoring modes, or hidden dialogue states, in an unsupervised fashion

(that is, without hand labeling of the tutoring modes), and that these modes bear a

resemblance to tutoring modes from the literature. One important aspect of validating these

models is to identify statistically significant correlations between the tutoring modes learned

by the models and the outcome of student learning as measured by learning gain from pre-

test to post-test, a line of analysis that directly investigates Hypothesis 2.1.

The HMMs in this section were learned from Corpus III, which was produced by the

main observational tutoring study. Notably, this study differs from the two pilot studies

because 1) the instrument to measure learning was improved based on piloting and further

refined based on input from three experts in teaching introductory computer science, and 2)

in addition to dialogue act annotation, the task actions in Corpus III were manually annotated

(Section 4.2), providing a rich basis for learning models that capture the interplay between

dialogue and task.

6.4.1 Learning separate HMMs by tutor

The main tutoring study featured two paid tutors who had achieved the highest average

student learning gains in the two pilot studies. Tutor A was a male computer science student

in his final semester of undergraduate studies. Tutor B was a female third-year computer

www.manaraa.com

97

science graduate student. Exploratory analysis of the corpus suggested that the tutors took

different approaches with respect to initiative, but achieved similar learning gains (Section

5.3). Because of the observed differences between tutoring strategies, a separate HMM was

derived from the tutoring sessions with each tutor. The ten-fold cross-validation methodology

was used, as described in the previous section, utilizing a penalized log-likelihood estimator

to measure model fit.

The best-fit HMM for Tutor A‘s dialogues features eight hidden states. Figure 18

depicts a subset of the transition probability diagram with nodes representing hidden states

(tutoring modes). Inside each node is a histogram of its emission probability distribution. For

simplicity, only five of the eight states are displayed in this diagram; each state that was

omitted mapped to less than 5% of the observed data sequences and was not significant in the

correlational analysis. Each tutoring mode has been interpreted and named based on its

structure. For example, State 4 is dominated by correct task actions; therefore, it is named

Correct Student Work. State 6 is comprised of student acknowledgements, pairs of tutor

statements, some correct task actions, and assessing questions by both tutor and student; this

state is labeled Student Acting on Tutor Help. The best-fit model for Tutor B‘s dialogues

features ten hidden states. A portion of this model, consisting of all states that mapped to

more than 5% of observations, is displayed in Figure 19.

Some tutoring modes with similar structures were identified by both models. Both

models feature a Correct Student Work mode characterized by the student’s successful

completion of a subtask. This state maps to 38% of observations with Tutor A and 29% of

observations with Tutor B. In both cases the Correct Student Work mode occurs more

frequently than any other mode.

The next three most frequently occurring modes each maps onto 10-15% of the

observations. For Tutor A, one such mode is Tutor Explanations with Feedback, while for

Tutor B a corresponding mode is Tutor Explanations with Assessing Questions. In both cases,

www.manaraa.com

98

the mode involves tutors explaining concepts or task elements. A key difference is that with

Tutor A, the explanation mode includes frequent negative elaborated feedback or positive

content-free feedback, while for Tutor B the explanation mode features questions in which

the tutor aims to gauge the student’s knowledge. A similar pattern emerges with each tutor’s

next most frequent mode: for Tutor A, this mode is Student Work with Tutor Positive

Feedback; for Tutor B, the mode is Student Work with Tutor Assessing Questions. These

corresponding modes illuminate a tendency for Tutor A to provide feedback in situations

where Tutor B chooses to ask the student a question. For Tutor A, the only mode that

featured assessing questions was Student Acting on Tutor Help, which as we will discuss,

was positively correlated with student learning.

www.manaraa.com

99

Figure 18. Portion of bigram HMM for Tutor A, Corpus III

www.manaraa.com

100

Figure 19. Portion of bigram HMM for Tutor B, Corpus III

6.4.2 Correlations between hidden dialogue states and student learning

With the learned models in hand, the next goal was to identify statistical relationships

between student learning and the automatically extracted tutoring modes. The models

presented above were used to fit each sequence of observed dialogue acts and task actions

onto the set of hidden states (i.e., tutoring modes) using maximum likelihood. The

transformed sequences were used to calculate the frequency distribution of the modes that

occurred in each tutoring session (e.g., State 0 = 32%, State 1 = 15%. . . State 8 = 3%). The

www.manaraa.com

101

average relative frequencies of each hidden state across all tutoring sessions with each tutor

are depicted in Figure 20.

(A)

(B)

Figure 20. Relative frequency of hidden states across corpus for Tutor A and Tutor B

For each HMM, correlations were generated between the learning gain of each

student session and the relative frequency vector of tutoring modes for that session to

determine whether significant relationships existed between student learning and the

proportion of discrete events (dialogue and problem solving) that were accounted for by each

tutoring mode. For Tutor A, the Student Acting on Tutor Help mode was positively correlated

with learning (r=0.51;p<0.0001). For Tutor B, the Tutor Elaborated Feedback mode was

positively correlated with learning (r=0.55; p=0.01) and the Work in Progress mode was

negatively correlated with learning (r=-0.57; p=0.0077).

This analysis has identified significant correlation between student learning gains and

the automatically extracted tutoring modes modeled in the HMMs as hidden states. While

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 1 2 3 4 5 6 7 8 9

www.manaraa.com

102

students who worked with either tutor on average achieved significant learning, each group

of students displayed a substantial range of learning gains. The correlation analysis leveraged

this data spread to gain insight into which aspects of the tutorial interaction were related to

higher or lower learning gains.

6.4.3 Discussion

For Tutor A, the relative frequency of the Student Acting on Tutor Help mode was positively

correlated with student learning. This mode was characterized primarily by student

acknowledgments and also featured tutor explanations, correct student work, positive tutor

feedback, and assessing questions from both tutor and student. The composition of this

tutoring mode suggests that these observed events possess a synergy that, in context,

contributed to student learning. In a learning scenario with novices, it is plausible that only a

small subset of tutor explanations were grasped by the students and put to use in the learning

task. The Student Acting on Tutor Help mode may correspond to those instances, in contrast

to the Correct Student Work mode in which students may have been applying prior

knowledge.

For Tutor B, the Tutor Elaborated Feedback mode was positively correlated with

student learning. This mode was relatively infrequent, mapping to only 7% of tutoring events.

However, providing direct feedback represents a departure from this tutor‘s more frequent

approach of asking assessing questions of the student. Given the nature of the learning task

and the corresponding structure of the learning instrument, students may have identified

errors in their work and grasped actionable new knowledge most readily through this tutor‘s

direct feedback.

For Tutor B, the Work in Progress mode was negatively correlated with learning. This

finding is consistent with observations that in this tutoring study, students did not easily seem

to operationalize new knowledge that came through tutor hints, but rather, often needed

www.manaraa.com

103

explicit constructive feedback. The Work in Progress mode features no direct tutor content

feedback. Tutor questions and explanations (which are at a more abstract level than the

student‘s solution) in the face of incomplete student work may not have been an effective

tutoring approach in this study.

The work described in this section confirms Hypothesis 2.1, that the hidden dialogue

structure extracted by HMMs is correlated with tutoring outcomes. This work takes a step

toward fully automatic extraction of tutorial strategies from corpora, a contribution that has

direct application in human tutoring research. The approach also can be used in tutorial

dialogue system development by producing a data-driven library of system strategies, and as

the next two chapters discuss, by contributing to the creation of data-driven tutorial dialogue

management models.

www.manaraa.com

104

CHAPTER 7

Dialogue Act Classification in Task-Oriented Tutorial Dialogue

All dialogue systems, including tutorial dialogue systems, must address the two central

challenges of a) interpreting user utterances and b) selecting system dialogue moves. This

chapter focuses on user utterance interpretation in terms of dialogue acts (Austin, 1962).

Dialogue acts are abstractions that provide a valuable intermediate representation that can be

used for dialogue management. The models presented in this chapter were developed from

Corpus III data generated by the third, and main, tutoring study. The corpus consists of

human textual dialogue utterances and a separate, parallel stream of user-generated task

actions. To classify student utterances with respect to dialogue acts in this complex task-

oriented domain, classifiers are constructed that utilize lexical and syntactic features along

with structural features including task/subtask labels, dialogue act history, speaker, and

hidden dialogue state in a vector-based representation. This chapter explores whether the

addition of HMM and task/subtask features improves the predictive performance of the

dialogue act classifiers. The results speak to Hypothesis 2.2.

 Because this chapter focuses on student utterances only, some dialogue act labels

from the symmetric tutor/student dialogue act classification scheme in Table 4 (Section 4. 1)

were renamed to better reflect dialogue acts from a student‘s perspective (no re-annotation

was required; there is a one-to-one correspondence between these labels and the symmetric

scheme presented previously). Table 8 displays the student dialogue acts and their relative

frequencies across the corpus, along with the inter-annotator agreement statistic for that

particular student utterance.

www.manaraa.com

105

Table 8. Student dialogue acts, frequencies, and Kappas in Corpus III

Student Dialogue Act Relative
Frequency

Human
κ

ACKNOWLEDGMENT (ACK) .17 .90

REQUEST FOR FEEDBACK (RF) .20 .91

EXTRA-DOMAIN (EX) .08 .79

GREETING (GR) .04 .92

UNCERTAIN FEEDBACK WITH ELABORATION
(UE)

.01 .53

UNCERTAIN FEEDBACK (U) .02 .49

NEGATIVE FEEDBACK WITH ELABORATION
(NE)

.01 .61

NEGATIVE FEEDBACK (N) .05 .76

POSITIVE FEEDBACK WITH ELABORATION (PE) .02 .43

POSITIVE FEEDBACK (P) .09 .81

QUESTION (Q) .09 .85

STATEMENT (S) .16 .82

THANKS (T) .05 1

7.1 Features

To address the classification task, the models make use of features of each utterance that

include the words and pairs of words, parts of speech, and syntactic structure. These features

are encoded within a vector-based representation along with structural features that include

dialogue act labels, task/subtask labels, and set of hidden dialogue state prediction features as

described below.
29

29
 The lexical and syntactic features were extracted collaboratively with Eunyoung Ha.

www.manaraa.com

106

Lexical and syntactic features were automatically extracted from the utterances using

the Stanford Parser default tokenizer and part of speech (POS) tagger (De Marneffe et al.,

2006). The parser created both phrase structure trees and typed dependencies for individual

sentences. From the phrase structure trees, we extracted the top-most syntactic node and its

first two children. In the case where an utterance consisted of more than one sentence, only

the phrase structure tree of the first sentence was considered. Typed dependencies between

pairs of words were extracted from each sentence. Individual word tokens in the utterances

were further processed with the Porter Stemmer (Porter, 1980) in the NLTK package (Loper

& Bird, 2004). The POS features were extracted in a similar way. Unigram and bigram word

and POS tags were included for feature selection in the classifiers.

Structural features include the annotated dialogue acts (Section 4.1), the annotated

task/subtask labels (4.2), and attributes that represent the hidden dialogue state (Section 6.2).

To derive these hidden dialogue state features, an HMM was trained utilizing the

methodology described in Section 6.3 and it was used to generate predictions in the form of a

probability distribution over possible user utterances at each step in the dialogue. This set of

stochastic features was subsequently passed to the classifier as part of the input vector, as

depicted in Figure 21.

www.manaraa.com

107

Figure 21. Generation of hidden dialogue state features

7.2 Input Vectors

The features were combined into a shared vector-based representation for training the

classifier. As depicted in Table 9, the components of the feature vector include binary

existence vectors for lexical and syntactic features for the current (target) utterance as well as

for three utterances of left context (this left context may include both tutor and student

utterances, which are distinguished by a separate indicator for the speaker). The task/subtask

and correctness history features encode the separate stream of task events. There is no one-

to-one correspondence between these history features and the left-hand dialogue context,

because several task events could have occurred between a pair of dialogue events (or vice

versa). This distinction is indicated in the table by the representation of dialogue time steps as

[t, t-1,…] and task history steps as [task(t), task(t-1),…]. In total, the feature vectors included

11,432 attributes that were made available for feature selection.

www.manaraa.com

108

7.3 Dialogue Act Classification Experiments

This section describes the vector-based models for classification of user dialogue acts using

maximum likelihood logistic regression. In addition to investigating the accuracy of the

overall model, binary dialogue act classifiers investigate the utility of feature types for

discriminating between particular dialogue acts of interest.

The classifiers are based on logistic regression, which finds a discriminant for each pair of

dialogue acts by assigning weights in a maximum likelihood fashion.
30

 The logistic

regression models were learned using the Weka machine learning toolkit (Hall et al., 2009).

For feature selection, attribute subset evaluation was used in conjunction with a best-first

approach that greedily searched the space of possible features using a hill climbing approach

with backtracking, also within the Weka toolkit. The prediction accuracy of the classifiers

was determined through ten-fold cross-validation on the corpus, and the results below are

presented in terms of average prediction accuracy (number of correct classifications divided

by total number of classifications) as well as by the Kappa statistic, which adjusts for

expected agreement by chance.

30
 In general, the model that maximizes likelihood is precisely the model that maximizes entropy under the same

constraints (Berger et al., 1996).

www.manaraa.com

109

Table 9. Feature vectors for dialogue act classification

Feature vector f Description

[wt,1,…wt,|w|,
pt,1,…,pt,|p|,
dt,1,…,dt,|d|,
st,1,…,st,|s|]

Binary existence vector for word unigrams & bigrams, POS
unigrams & bigrams, dependency types, and syntactic
nodes for current target utterance t

[wt-k,1,…wt-k,|w|,
pt-k,1,…,pt-k,|p|,
dt-k,1,…,dt-k,|d|,
st-k,1,…,st-k,|s|]
wherek=1,…,3

Binary existence vector for word unigrams & bigrams, POS
unigrams & bigrams, dependency types, and syntactic
nodes for three utterances of left context

[p(o1),…,p(o|S|)]
Probability distribution for emission symbols in predicted
next hidden state as generated by HMM

[dat-1,dat-2, dat-3] Dialogue act left context

[spt-1,spt-2, spt-3] Speaker label left context
[tktask(t-1),tktask(t-2), tktask(t-3)] Three steps of subtask history (each level of hierarchy

represented as a separate feature)

pt Indicator for whether the target utterance was immediately
preceded by a task event

7.3.1 Overall classification

The overall dialogue act classification model was trained to classify each utterance with

respect to the thirteen dialogue acts (Table 8). For this task, the feature selection algorithm

selected 63 attributes including some syntax, dependency, POS, and word attributes as well

as two steps of dialogue act history, speaker history, and one task/subtask feature. No hidden

dialogue state features or task correctness attributes were selected. The overall average

classification accuracy across ten folds was 62.8% (stdev=3. 26%). This accuracy constitutes

a 3.7-fold improvement over baseline chance of 17% (the relative frequency of the most

www.manaraa.com

110

frequently occurring dialogue act, ACK). An alternate nontrivial baseline is a bigram model

on true dialogue acts (including speaker tags); this model‘s accuracy was 36.8%.

In addition to the classifier with all features available as described above, the

experiments include classifiers that used only the lexical and syntactic features of each

utterance. This approach is of interest in part because it avoids the error propagation that can

happen when a model relies on a series of its own previous classifications as features. The

classifier that had access to only the set of lexical and syntactic features selected 85 of these

attributes and achieved an average prediction accuracy of 60.2% (stdev=2.44%) and ĸ=. 53

(stdev=0.03), slightly worse than the 62.8% achieved with the model that had access to all

features (one-tailed two sample t-test p=0.027). The overall average Kappa for the full

classifier was ĸ=. 57 (stdev=0.04). The confusion matrix for this model is depicted in Figure

22, which depicts agreements along the diagonal and disagreements elsewhere. In this figure,

the row indicates the true tag and the column indicates the automatically applied tag.

Figure 22. Confusion matrix for student dialogue act classification (row=true tag)

www.manaraa.com

111

7.3.2 Binary dialogue act classifiers

In tutoring, some student dialogue acts are particularly important to identify because of their

implications for the tutor‘s response or for the student model. For example, a student‘s

REQUEST FOR FEEDBACK requires the tutor to assess the condition of the task artifact, rather

than to query the in-domain factual knowledge base. UNCERTAIN FEEDBACK is another

dialogue act of high importance because identifying it allows the tutor to respond in an

affectively advantageous way (Forbes-Riley & Litman, 2009). Although hidden dialogue

state features and task/subtask features generally were not useful for the overall dialogue

classification task, it is of interest to explore whether these features are useful for

differentiating particular dialogue acts of interest.

To explore which features are useful for classifying particular dialogue acts, we

constructed binary dialogue act classifiers, one for each dialogue act, by preprocessing the

dialogue act labels from the set of thirteen down to TRUE or FALSE depending on whether the

label of the utterance matched the target dialogue act for that specialized classifier. Table 10

displays the features that were selected for each binary classifier, along with the percent

accuracy and Kappa for each model. Note that for some dialogue acts the chance baseline is

very high, and therefore even a model with high prediction accuracy achieves a low Kappa.

As shown in the table below, for several dialogue act models, the feature selection

algorithm retained subtask and HMM features. However, in an experiment to quantify the

utility of these features, the performance of the binary all-features models was compared to

the performance of the overall all-features model on that dialogue act. The only dialogue acts

whose specialized models outperformed the overall model (p<0.05, one-tailed t-test) were

GREETING and EXTRA-DOMAIN. These results demonstrate that hidden dialogue state and

task/subtask features did not improve classification accuracy for dialogue acts of high

pedagogical interest.

www.manaraa.com

112

Table 10. Feature selection for binary dialogue act classifiers

DA Features Selected
%

Correct Model κ

ACK 51
Lexical/syntax, HMM, DA history
(preceding=S), speaker history

(preceding=Tutor)
.933 .75

RF 42 Lexical/syntax, DA history, preceded by
subtask

.905 .72

EX 57 Dependency, pos, word, HMM, DA history
(preceding=EX), subtask

.939 .45

GR 11 Syntax, pos, word, DA (previous=EMPTY),
speaker, subtask

.998 .97

UE 21 Dependency, pos, word, subtask .991 .33

U 63 Syntax, dependency, pos, word, HMM,
subtask

.979 .21

NE 44 Dependency, pos, word, HMM, DA history
(2 ago=UNCERTAIN), subtask

.987 0

N 83 Lexical/syntax, DA history, subtask .966 .76

PE 90 Dependency, pos, word, HMM, subtask .976 .10

P 110 Dependency, pos, word, HMM, DA history
(previous=REQUEST FEEDBACK)

.945 .58

Q 43 Syntax, dep, pos, word, HMM, subtask .940 .60

S 92 Syntax, pos, word, HMM, DA history
(previous=EMPTY or Q)

.901 .57

T 29 Syntax, pos, word, DA history
(previous=POSITIVE) (3 ago=POSITIVE)

.992 .92

www.manaraa.com

113

7.4 Discussion

This chapter has presented a maximum likelihood classifier that assigns dialogue act labels to

user utterances from a corpus of human-human tutorial dialogue given a set of lexical,

syntactic, and structural features. Overall, this classifier achieved 62.8% accuracy in ten-fold

cross-validation on the corpus.
31

 However, during feature selection, the overall model did not

select any hidden dialogue state features, and selected only one task/subtask feature out of

more than 50 possible. Therefore, the results do not support Hypothesis 2.2, which stated that

the structural features of hidden dialogue state and task/subtask would improve dialogue act

classification for user utterances.

The performance (369% over chance baseline) achieved with the overall model is on

par with other automatic dialogue act tagging models, both sequential and vector-based, in

task-oriented domains that do not feature complex, user-driven parallel tasks. In a catalogue

ordering domain with an integrated task and dialogue model, Bangalore et al.(2009) report

75% classification accuracy for user utterances using a maximum entropy classifier, a 275%

improvement over baseline. Poesio & Mikheev (1998) report 54% classification accuracy by

utilizing conversational game structure and speaker changes in the Maptask corpus, an

improvement of 170% over baseline. Recent work on Maptask reports a classification

accuracy of 65.7% using lexical and syntactic features alone (Sridhar et al., 2009). This

classifier is analogous to the lexical/syntactic feature model of this work, which achieved

60.2% accuracy.

The results of these models demonstrate that, consistent with the findings in other

task-oriented domains, lexical/syntactic features are highly useful for classifying student

dialogue moves in this complex task-oriented domain. The utility of these features is so great

31
 Individual words, or unigrams, were not included in an early round of classifiers, and the performance was

significantly lower, at 45. 3% overall.

www.manaraa.com

114

that hidden dialogue state and task/subtask features were not useful for improving

performance of the models in terms of classification accuracy. In contrast, the next chapter

investigates the use of these features within a hierarchical HMM framework for predicting

human tutor moves within a corpus, where the HMM structure significantly improves

performance of the models.

www.manaraa.com

115

CHAPTER 8

Leveraging Hidden Dialogue State to Select Tutorial Moves

The previous chapter dealt with learning data-driven models for dialogue act classification of

student utterances within task-oriented tutorial dialogue. This chapter turns to the equally

important task of tutorial move selection. Historically, tutorial dialogue policies have been

based either on system designers‘ pedagogical knowledge or on observational studies of

human tutors followed by manual analysis. (Please see Section 2.2 for a detailed historical

overview.) This chapter presents a data-driven approach that extracts a tutorial dialogue

management policy directly from a corpus. The degree to which this tutorial dialogue policy

represents the actions of the human tutors is evidenced by its accuracy on the task of

predicting the tutors‘ dialogue moves. The results provide support for Hypothesis 2.3, which

states that a hierarchical HMM that explicitly models task/subtask structure will predict

tutorial moves within the corpus more accurately than a flat HMM that does not model the

task structure.

 For student utterances, the surface lexical and syntactic features are given at the time

of classification (motivating the use of the vector-based approach to handle a large number of

features). In contrast, in a real-time tutorial dialogue applications the surface features of a

planned tutorial utterance are not yet available, but will be realized based on the systems‘

choice of dialogue act. Therefore, for the task of predicting tutor moves, rather than utilizing

feature vectors as input to a classifier, a sequential representation is used in which the only

input for training the models are sequences of dialogue acts and task events. In addition to

flat HMMs, hierarchical hidden Markov models are constructed that explicitly model

www.manaraa.com

116

task/subtask structure. The models presented in this chapter were trained using the main

corpus, Corpus III.

8.1 Introduction to Hierarchical Hidden Markov Models

Hierarchical hidden Markov models (HHMMs) allow for explicit representation of multilevel

stochastic structure (Fine et al., 1998). HHMMs include two types of hidden states: internal

nodes, which do not produce observation symbols, and production nodes, which do produce

observations. An internal node includes a set of sub-states that correspond to its potential

children, S={s1, s2, …,sN}, each of which is itself the root of an HHMM. The initial

probability distribution Π=[πi] for each internal node governs the probability that the model

will make a vertical transition to substatesi from this internal node; that is, that this internal

node will produce substatesi as its leftmost child. Horizontal transitions are governed by a

transition probability distribution similar to that described above for flat HMMs. Production

nodes are defined by their observation symbol alphabet and an emission probability

distribution over the symbols; HHMMs do not require a global observation symbol alphabet.

HHMMs of arbitrary topology can be trained using a generalized version of the Baum-Welch

algorithm (Fine et al., 1998; Rabiner, 1989). The generative topology of an HHMM in

context of the tutorial dialogue application at hand is illustrated in Figure 23.

www.manaraa.com

117

Figure 23. Generative topology of hierarchical HMM

8.2 Learned Hierarchical HMM

The HHMMs in this chapter feature a pre-specified model topology based on known

task/subtask structure. A Bayesian view of a portion of the best-fit HHMM is depicted in

Figure 24. Again, only the principal distribution components are shown at the sub-task level.

This model was trained using five-fold cross-validation instead of ten-fold cross-validation,

to address the absence of symbols from the training set that are present in the testing set, a

problem that arose from splitting the data hierarchically.

www.manaraa.com

118

Figure 24. Bayesian view of learned hierarchical HMM

8.3 Comparison of MM, HMM, and HHMM Prediction Accuracy

Markov Models (MMs), HMMs, and HHMMs were trained on Corpus III and their

prediction accuracy of tutorial dialogue acts was calculated by providing the model with

partial sequences from the test set and querying for the next tutorial move. The chance

baseline prediction accuracy for this task is 41.1%, corresponding to the most frequent

tutorial dialogue act (STATEMENT). As depicted in Figure 25, a first-order MM performed

worse than baseline (p<0.001)
32

, at 27% average prediction accuracy (σMM=6%). HMMs

performed better than baseline (p<0.0001), with an average accuracy of 48% (σHMM=3%).

32
 All p-values in this section were produced by two-sample one-tailed t-tests with unequal sample variances.

www.manaraa.com

119

HHMMs averaged 57% accuracy, significantly higher than baseline (p=0.002), but weakly

significantly higher than HMMs (p=0.04) and with high variation (σHHMM=23%).33

Figure 25. Avg. prediction accuracy across folds of MM, HMM, and HHMM compared to
the most-frequent class baseline34

To further explore the performance of the HHMMs, Figure 26 displays their prediction

accuracy on each of six labeled subtasks. These subtasks correspond to the top level of the

hierarchical task/subtask annotation scheme. The UNDERSTAND THE PROBLEM subtask

corresponds to the initial phase of most tutoring sessions, in which the student and tutor agree

to some extent on a problem-solving plan. Subtasks 1, 2, and 3 account for the

implementation and debugging of three distinct modules within the learning task, and

Subtask 4 involves testing and assessing the student‘s finalized program. 100% of students

reached Subtask 1, 94% of students reached Subtask 2, 81% of students reached Subtask 3,

33
 Because the two tutors in this study utilized different strategies (Sections 4.3 and 6.3), separate models were

also built by tutor in a separate experiment. However, these models performed on par with (no statistical

difference from) the aggregate models. This phenomenon is likely due to the greater amount of training data

available to the aggregate models.

34
 See Section 8.4 for further discussion.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

1st Order
Markov Model

Hidden Markov
Model

Hierarchical
Hidden Markov

Model

Avg. Prediction Accuracy

Baseline

www.manaraa.com

120

and 54% of students reached Subtask 4. The EXTRA-DOMAIN subtask involves side

conversations whose topics are outside of the domain.

The HHMM performed as well as or better (p<0.01) than baseline on the first three

in-domain subtasks. The performance on Subtask 4 was not distinguishable from baseline

(p=0.06). The model did not outperform baseline (p=0.40) for the UNDERSTAND THE

PROBLEM subtask, and qualitative inspection of the corpus reveals that the dialogue during

this phase of tutoring exhibits limited regularities between students; additionally, only 54%

of students engaged in this subtask; the remaining students began directly working on

Subtask 1.

Figure 26. Average HHMM prediction accuracy across folds by subtask

8.4 Discussion

The results support Hypothesis 2.3 that HMMs, because of their capacity for explicitly

representing dialogue structure at an abstract level, perform better than MMs for predicting

tutor moves. The results also suggest that explicitly modeling hierarchical task structure can

further improve prediction accuracy of the model. The below-baseline performance of the

bigram model illustrates that, unlike conversational dialogue or task-oriented dialogue that

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Understand
Problem

Subtask 1 Subtask 2 Subtask 3 Subtask 4 Extra-domain

HHMM Prediction Accuracy

Baseline

www.manaraa.com

121

does not feature a parallel user-driven task, in this complex task-oriented domain an

immediately preceding event is not highly predictive of the next move. This finding

highlights the possibility that the first-order Markov assumption may exclude important

dependencies within the data, a limitation that is further discussed in Chapter 9.

Considering the performance of the HHMM on individual subtasks reveals interesting

properties of the dialogues. First, the HHMM is unable to outperform baseline on the

UNDERSTAND THE PROBLEM subtask, probably due to a high level of variation between

individuals during this portion of the dialogues. On all four in-domain subtasks, the HHMM

achieved a 30% to 50% increase over baseline. For extra-domain dialogues, which involve

side conversations that are not task-related, the HHMM achieved 86% prediction accuracy on

tutor moves, which constitutes a 115% improvement over baseline. This high accuracy may

be due in part to the fact that out-of-domain asides were almost exclusively initiated by the

student, and tutors rarely engaged in such exchanges beyond providing a single response.

This regularity likely facilitated prediction of the tutor‘s dialogue moves during out-of-

domain talk.

Only one recent project reports extensively on predicting system actions from a

corpus of human-human dialogue. Bangalore et al.‘s (2008) flat task/dialogue model in a

catalogue-ordering domain achieved a prediction accuracy of 55% for system dialogue acts, a

175% improvement over baseline. When explicitly modeling the hierarchical task/subtask

dialogue structure, they report a prediction accuracy of 35.6% for system moves,

approximately 75% above baseline (Bangalore & Stent, 2009). These findings were obtained

by utilizing a variety of lexical and syntactic features from preceding utterances along with

manually annotated dialogue acts and task/subtask labels. In comparison, the HHMM in this

chapter achieved an average 42% improvement over baseline using only manually annotated

dialogue acts and task/subtask labels without any lexical or syntactic features.

www.manaraa.com

122

The best model performed better than baseline by a significant margin. The absolute

prediction accuracy achieved by the HHMM was 57% across the corpus, which at first blush

may appear too low to be of practical use. However, the choice of tutorial move involves

some measure of subjectivity, and in many contexts there may be no uniquely appropriate

dialogue act. Work in other domains has dealt with this uncertainty by maintaining multiple

hypotheses (Wright Hastie et al., 2002) and by mapping to clustered sets of moves rather

than maintaining policies for each possible system selection (Young et al., 2009). Such

approaches may prove useful in the complex task-oriented domain of computer science

tutoring as well, and may help to more fully realize the potential of a machine-learned

dialogue management model.

www.manaraa.com

123

CHAPTER 9

Conclusion

Creating intelligent systems that bring the benefits of one-on-one human tutoring to a broad

population of learners is a grand challenge for the field of computing. Tutorial dialogue

systems hold great promise for closing the effectiveness gap that has been observed between

human tutors, as models of successful tutoring, and intelligent tutoring systems. A

particularly important direction involves utilizing data-driven approaches for defining the

behavior of computer-based tutorial dialogue systems based on corpora of effective human

tutoring. These data-driven approaches may facilitate rapid computer-driven dialogue system

development, give rise to flexible dialogue management policies, support interpretation of

user input, and ultimately result in a more effective computer-based learning experience for

students than any current generation tutorial dialogue system has achieved. With these goals

in mind, this dissertation addresses two phases of data-driven investigation. The first phase

involves collecting, annotating, and exploring corpora. The second phase involves learning

and evaluating computational models of hidden dialogue states, student dialogue act

classification, and tutor move prediction.

9.1 Hypotheses Revisited

The research presented in this dissertation has produced evidence that speaks to several

exploratory hypotheses.

 Hypothesis 1.1. Because human tutors adapt their behavior based on student

characteristics including skill level, self-efficacy, and gender, the distributions of

www.manaraa.com

124

dialogue acts within human-to-human tutoring sessions are dependent on these

student characteristics.

o The results of dialogue profile analysis (Section 5.1) indicate that human

tutors do adapt their dialogue profiles depending on learner characteristics,

even when those characteristics are hidden from the tutors (Boyer, Vouk et

al., 2007). This finding suggests specific ways in which tutorial dialogue

systems might adapt behavior based on learner characteristics, such as

providing more acknowledgements to students with high self-efficacy, and

anticipating more requests for feedback from female students.

 Hypothesis 1.2. Because some tutoring approaches are more effective than others,

given a tutoring context, the frequency of some tutor moves is positively

correlated with student learning and motivational outcomes while other moves

are negatively correlated with these outcomes.

o Bigrams of incorrect student problem-solving actions, and the subsequent

tutor moves, were considered (Section 5.2). Their relative frequency

across the corpus was correlated with learning and motivational outcomes

(Boyer, Phillips et al., 2008a; Boyer, Phillips et al., 2008b). Explicit

tutorial encouragement following incorrect student action was found to

correlate positively with motivational outcomes but negatively with

learning. Positive cognitive feedback, as a corrective tactic, was found to

correlate with improved motivational outcomes, but not to correlate

significantly with learning. These results are consistent with findings from

other tutoring domains. They highlight that caution is necessary when

implementing explicit motivational techniques within tutorial dialogue

systems.

www.manaraa.com

125

 Hypothesis 1.3. Because autonomy is an important aspect of the learning process

that may impact cognitive and motivational outcomes differently, the level of

autonomy given to students during tutoring is correlated with learning and

motivational outcomes.

o The analysis for tutor and student initiative revealed no evidence of a

statistically significant link between student initiative and learning

(Section 5.3). However, students who were allowed more initiative did

have significantly higher self-efficacy gain from pre-test to post-test

(Boyer, Phillips, Wallis et al., 2009a; Boyer, Phillips, Wallis et al.,

2009b). These results suggest that allowing students more initiative may

improve the motivational outcome of self-efficacy gain.

In addition to the exploratory hypotheses listed above, several hypotheses regarding

modeling the structure of tutorial dialogue with hidden Markov models were also addressed.

 Hypothesis 2.1. Hidden Markov models (HMMs) are able to discover tutoring

modes, or hidden dialogue states, that i) qualitatively correspond to tutoring

modes from the literature, and ii) whose frequencies of occurrence correlate with

student learning.

o Qualitative analysis (Sections 6.1 and 6.2) suggests that the automatically

extracted hidden states correspond to tutoring modes from the literature.

The frequency of occurrence of some automatically extracted hidden

dialogue states was found to correlate significantly with student learning

(Section 6.3). These findings provide evidence that an HMM can

automatically extract pedagogically relevant tutorial dialogue structure in

the form of a stochastic layer formed from hidden states.

www.manaraa.com

126

 Hypothesis 2.2. The hidden dialogue state and task/subtask structure are

predictive of student dialogue acts.

o An observable Markov baseline classifier, B1, was constructed using

dialogue act sequences only. Model M1 was constructed using lexical and

structural features, and M1’ added to M1‘s available features and attributes

from the hidden dialogue state and the task/subtask structure. Both M1and

M1’ achieved higher accuracy than B1 for the overall task of classifying a

user utterance with respect to the full set of 13 dialogue acts. However,

contrary to the hypothesis, M1’ did not utilize any hidden dialogue state

features and only selected one out of more than 50 task/subtask features.

The results demonstrate that lexical and syntactic cues are strong

indicators of student dialogue acts, a finding that is consistent with user

dialogue act classification from other task-oriented domains.

 Hypothesis 2.3. The hidden dialogue state and task/subtask structure are

predictive of tutor dialogue acts.

o A baseline first-order Markov model, B2, of sequences of dialogue acts

and task events was compared with a flat HMM, M2, and further with a

hierarchical HMM, M2’, structured according to the task/subtask

hierarchy. Both M2 and M2’ predicted human tutorial moves within the

corpus more accurately than B2. Furthermore, consistent with the

hypothesis, hierarchical HMM M2’ was more accurate than M2. This

finding suggests that for the complex task-oriented domain of tutoring

introductory computer programming, models of human tutorial dialogue

policy can be made more accurate by leveraging knowledge of both the

task/subtask structure and the inferred hidden dialogue state.

www.manaraa.com

127

9.2 Summary

Exploration of three tutorial dialogue corpora in the domain of introductory computer

programming yielded new insights into the structure of the dialogue that occurs in this

complex task-oriented domain. As expected, human tutors appear to adapt to learner

characteristics such as incoming knowledge level, self-efficacy, and gender. Tutors undertake

a variety of cognitive and motivational remediation. Sometimes these cognitive and

motivational goals are at odds with each other, but it may be possible to positively impact

both types of goals by selecting appropriate feedback. Finally, compared to a very proactive

tutoring approach, allowing more autonomy may better support students‘ motivation.

 A hidden Markov modeling framework was selected for development of

computational models of the corpora because HMMs explicitly represent a stochastic layer of

hidden structures. These hidden states were found in qualitative analysis to correspond to

tutoring modes from the literature. Furthermore, some tutoring modes were found to correlate

with student learning, indicating that HMMs can discover, in an unsupervised fashion,

meaningful hidden dialogue structure.

Based on these encouraging results, HMMs were also utilized to produce prediction

features within a larger set of attributes for vector-based maximum likelihood classification

of student dialogue acts. The results indicate that HMM features as well as task/subtask

features improved dialogue act classification for three student feedback acts. Additionally,

overall the classifiers achieved performance on par with state-of-the-art dialogue act

classification accuracy in less complex domains.

The flat HMM approach was extended to a hierarchical HMM that explicitly

represented task/subtask structure within the computer programming exercise to predict

tutorial moves within the corpus, a first step toward fully data-driven tutorial policy

extraction. Both HMMs and hierarchical HMMs outperformed chance and a baseline Markov

www.manaraa.com

128

model. Hierarchical HMMs performed with highest accuracy overall for predicting tutor

dialogue acts.

9.3 Limitations

This dissertation research was conducted based on corpora of naturalistic human one-on-one

tutorial dialogue in the domain of introductory computer programming. The extent to which

the exploratory findings and machine-learned models generalize to other domains in natural

language dialogue, even to tutoring in other task-oriented scientific domains, has not been

established and is an important direction of future work. Another limitation to generalizing

the results was the low number of women and underrepresented groups participating in the

studies. Low participation of underrepresented groups was not unexpected given national

trends in CS enrollments (Zweben, 2008). These students are particularly important to

include in investigations of the impact of intelligent tutoring systems, and active steps should

be taken to include them in future studies.

Other limitations involve the design of the observational tutoring studies. First, while

the tutors all had some level of experience with tutoring computer science, none had received

formal training in pedagogical strategies. Another significant issue is that a control group was

not included in any of the studies because of resource limitations and because holding

subjects out for a control group would have decreased the sample size of students who were

tutored, reducing the size of the corpora. Further, the tutoring sessions were one-time events

rather than repeated interventions that took place over the academic term; therefore it is not

clear what effect size these tutors would have achieved compared to classroom instruction.

Finally, some limitations involve the models chosen. As mentioned previously, the

Markov model and hidden Markov modeling approaches were motivated by aspects of

natural language dialogue that have been long noted in the literature. These properties

include the strong local dependence of adjacent dialogue acts, which has led to the common

www.manaraa.com

129

practice in natural language dialogue research of making a first-order Markov assumption

over input sequences to simplify the modeling process. However, as findings in Section 8.4

highlight, this local dependency may not be as strong in the task-oriented domain of

introductory computer science tutoring as in other domains such as conversational speech.

This issue raises questions about the most suitable baseline model for comparison in future

work, and suggests that the HMMs presented here, because of their first-order assumption,

might be improved by taking into account a longer window of dialogue history. However,

creating more complex models with longer-range dependencies will require larger data sets

and increased computation time for model training, a tradeoff that must be explored to

determine the optimal approach.

9.4 Future Work

Perhaps the most important area for future work that is highlighted by this dissertation

involves unsupervised dialogue modeling, in which manual annotation is completely

eliminated from the data processing pipeline. Unsupervised dialogue modeling has only just

begun to be explored for conversational and task-oriented dialogue, but the challenges are

many. The complexities of a rich task-oriented domain further complicate the unsupervised

dialogue modeling endeavor, yet the creation of successful unsupervised task-oriented

dialogue models will constitute a critical step toward overcoming the very high development

cost and barriers to effectiveness that are associated with the current generation of dialogue

systems.

Learning models from corpora of expert human tutoring will be a key step toward

creating highly effective data-driven tutorial dialogue policies. It is hoped that the modeling

approaches presented in this dissertation will generalize successfully to corpora of expert

human tutoring and to other domains.

www.manaraa.com

130

While the accuracy of the dialogue act classifiers and predictors reported here are on

par with those reported by other researchers in domains that do not involve a separate user-

driven task, it is likely that including student characteristics such as incoming knowledge

level, self-efficacy, and gender could improve the models substantially. For example,

exploratory work reported here indicated that dialogue profiles of students with high self-

efficacy differed substantially from those of students with lower self-efficacy. Therefore,

including knowledge of the dialogue profile within a dialogue act classifier or tutorial move

predictor may improve its performance.

9.5 Concluding Remarks

This dissertation was motivated by the author‘s desire to improve the state of computer

science education through research into individual learner adaptation. Tutorial dialogue

systems hold great promise for realizing that dream of bringing individualized instruction to

every learner. While the Intelligent Tutoring Systems field is only just beginning to truly

understand the impact of natural language dialogue, affect, collaboration, and other important

phenomena on students‘ learning, the Natural Language Dialogue systems research

community has begun to explore complex task-oriented domains as a focus for its work. The

time is ripe for pedagogical goals to drive innovation in dialogue systems research, and this

dissertation represents a first step toward this end.

www.manaraa.com

131

GLOSSARY

acoustic – the properties of an utterance relating to its sound

adjacency pair – two dialogue acts that co-occur because one establishes an expectation for

the other to follow (e.g., QUESTION-ANSWER, STATEMENT-ACKNOWLEDGEMENT)

affect – emotion

annotation – the process by which labels are applied, either manually or automatically, to

raw data

bigram – two adjacent observations in a sequence

cognitive – relating to the information processing aspects of acquiring knowledge, skills, or

understanding

corpora – plural of corpus

corpus – a collection of written or spoken material

dialogue act – a communicative purpose, or action, that underlies a dialogue move (e.g.,

provide positive feedback, agree, give a command)

dialogue move – a turn taken within dialogue; also referred to as an utterance

dialogue policy – a mapping from a set of states to a set of actions; this mapping defines the

dialogue moves that a system takes

domain – an area of application; in this dissertation, refers to the tutoring of introductory

Java programming

inter-rater agreement – also known as inter-rater reliability; the extent to which two or

more human annotators agree in their application of an annotation scheme to a corpus

Kappa statistic – a measure of inter-rater agreement that adjusts for how likely the annotators

would be to agree by chance

www.manaraa.com

132

lexical – relating to words or vocabulary

log-likelihood score – a measure of how likely a set of observations would be under a given

model

policy – see dialogue policy

prosodic – relating to vocal stress and intonation

self-efficacy – one‘s own belief in his or her capability to produce given levels of attainment

on a particular task. This term differs from confidence, which is more general and may

also refer to a person‘s certainty at failing instead of succeeding

syntactic – relating to the arrangement of words and phrases within an utterance

tagging – see annotation

utterance – see dialogue move

www.manaraa.com

133

REFERENCES

Ai, H., Tetreault, J. R., & Litman, D. J. (2007). Comparing user simulation models for dialog

strategy learning. Proceedings of the North American Chapter of the Association for

Computational Linguistics Human Technology Conference, Companion Volume,

Rochester, New York. 1-4.

Aleven, V., McLaren, B., Roll, I., & Koedinger, K. (2004). Toward tutoring help seeking:

Applying cognitive modeling to meta-cognitive skills. Proceedings of the 7th

International Conference on Intelligent Tutoring Systems, 227-239.

Aleven, V., McLaren, B., Sewall, J., & Koedinger, K. (2009). Example-tracing tutors: A new

paradigm for intelligent tutoring systems. International Journal of Artificial Intelligence

and Education, 19, 105-154.

Aleven, V., Popescu, O., & Koedinger, K. R. (2001). Towards tutorial dialog to support self-

explanation: Adding natural language understanding to a cognitive tutor. International

Conference on Artificial Intelligence in Education, 246-255.

Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L., & Stent, A. (2001). An

architecture for a generic dialogue shell. Natural Language Engineering, 6(3&4), 213-

228.

Allen, J., Ferguson, G., & Stent, A. (2001). An architecture for more realistic conversational

systems. Proceedings of the 6th International Conference on Intelligent User Interfaces,

1-8.

Artstein, R., & Poesio, M. (2008). Inter-coder agreement for computational linguistics.

Computational Linguistics, 34(4), 555-596.

Austin, J. L. (1962). How to do things with words. Oxford: Oxford University Press.

Bandura, A. (1997). Self-efficacy: The exercise of control. Worth Publishers.

www.manaraa.com

134

Bandura, A. (2006). Guide for constructing self-efficacy scales. In F. Pajares, & T. Urdan

(Eds.), Self-efficacy beliefs of adolescents (pp. 307-337). Greenwich, Connecticut:

Information Age Publishing.

Bangalore, S., Di Fabbrizio, G., & Stent, A. (2008). Learning the structure of task-driven

human-human dialogs. IEEE Transactions on Audio, Speech, and Language Processing,

16(7), 1249-1259.

Bangalore, S., & Stent, A. J. (2009). Incremental parsing models for dialog task structure.

Proceedings of the 12th Conference of the European Chapter of the Association for

Computational Linguistics, 94-102.

Barker, L. J., & Garvin-Doxas, K. (2004). Making visible the behaviors that influence

learning environment: A qualitative exploration of computer science classrooms.

Computer Science Education, 14(2), 119-145.

Ben-Ari, M. (1998). Constructivism in computer science education. Proceedings of the 29th

SIGCSE Technical Symposium on Computer Science Education, 257-261.

Berger, A. L., Pietra, V. J. D., & Pietra, S. A. D. (1996). A maximum entropy approach to

natural language processing. Computational Linguistics, 22(1), 71.

Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.

Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational

goals. New York: David McKay.

Bloom, B. S. (1984). The 2 Sigma problem: The search for methods of group instruction as

effective as one-to-one tutoring. Educational Researcher, 13(6), 4-16.

Boyer, K. E., Dwight, A. A., Fondren, R. T., Vouk, M. A., & Lester, J. C. (2008). A

development environment for distributed synchronous collaborative programming.

Proceedings of the 13th Annual Conference on Innovation and Technology in Computer

Science Education, Madrid, Spain. 158-162.

www.manaraa.com

135

Boyer, K. E., Dwight, R. S., Miller, C. S., Raubenheimer, C. D., Stallmann, M. F., & Vouk,

M. A. (2007). A case for smaller class size with integrated lab for introductory computer

science. The 38th SIGCSE Technical Symposium on Computer Science Education,

Covington, Kentucky. 341-345.

Boyer, K. E., Ha, E. Y., Phillips, R., Wallis, M. D., Vouk, M. A., & Lester, J. C. (In press).

Dialogue act modeling in a complex task-oriented domain. To appear in Proceedings of

the 11th Annual SIGDIAL Meeting on Discourse and Dialogue, Tokyo, Japan.

Boyer, K. E., Ha, E. Y., Wallis, M. D., Phillips, R., Vouk, M. A., & Lester, J. C. (2009).

Discovering tutorial dialogue strategies with hidden Markov models. Proceedings of the

14th International Conference on Artificial Intelligence in Education, Brighton, U. K.

141-148.

Boyer, K. E., Lahti, W., Phillips, R., Wallis, M., Vouk, M. A., & Lester, J. C. (2010).

Principles of asking effective questions to improve student problem solving. 41st

SIGCSE Technical Symposium on Computer Science Education, Milwaukee, Wisconsin.

460-464.

Boyer, K. E., Phillips, R., Ha, E. Y., Wallis, M. D., Vouk, M. A., & Lester, J. C. (2009).

Modeling dialogue structure with adjacency pair analysis and hidden Markov models.

The North American Association for Computational Linguistics Human Language

Technologies Conference (NAACL-HLT) Short Papers, 49-52.

Boyer, K. E., Phillips, R., Ha, E. Y., Wallis, M. D., Vouk, M. A., & Lester, J. C. (2010a).

Leveraging hidden dialogue state to select tutorial moves. Proceedings of the NAACL

Workshop on Innovative use of NLP for Building Educational Applications, Los

Angeles, California. 66-73.

Boyer, K. E., Phillips, R., Ha, E. Y., Wallis, M. D., Vouk, M. A., & Lester, J. C. (2010b). A

preliminary investigation of hierarchical hidden Markov models for tutorial planning.

www.manaraa.com

136

Proceedings of the 3rd International Conference on Educational Data Mining,

Pittsburgh, Pennsylvania. 285-286.

Boyer, K. E., Phillips, R., Ingram, A., Ha, E. Y., Wallis, M. D., Vouk, M. A., & Lester, J. C.

(2010). Characterizing the effectiveness of tutorial dialogue with hidden Markov

models. Proceedings of the 10th International Conference on Intelligent Tutoring

Systems, Pittsburgh, Pennsylvania. 55-64.

Boyer, K. E., Phillips, R., Wallis, M. D., Vouk, M. A., & Lester, J. C. (2008a). Balancing

cognitive and motivational scaffolding in tutorial dialogue. Proceedings of the 9th

International Conference on Intelligent Tutoring Systems, Montreal, Canada. 239-249.

Boyer, K. E., Phillips, R., Wallis, M. D., Vouk, M. A., & Lester, J. C. (2008b). Learner

characteristics and feedback in tutorial dialogue. Proceedings of the Third ACL

Workshop on Innovative use of NLP for Building Educational Applications, 53-61.

Boyer, K. E., Phillips, R., Wallis, M. D., Vouk, M. A., & Lester, J. C. (2009a). The impact of

instructor initiative on student learning through assisted problem solving. Proceedings of

the 40th SIGCSE Technical Symposium on Computer Science Education, Chattanooga,

Tennessee. 14-18.

Boyer, K. E., Phillips, R., Wallis, M. D., Vouk, M. A., & Lester, J. C. (2009b). Investigating

the role of student motivation in computer science education through one-on-one

tutoring. Computer Science Education, 19(2), 111-135.

Boyer, K. E., Vouk, M. A., & Lester, J. C. (2007). The influence of learner characteristics on

task-oriented tutorial dialogue. Proceedings of the 13th International Conference on

Artificial Intelligence in Education, Marina del Rey, California. 365-372.

Cade, W., Copeland, J., Person, N., & D'Mello, S. (2008). Dialog modes in expert tutoring.

Proceedings of the 9th International Conference on Intelligent Tutoring Systems,

Montreal, Canada. 470-479.

www.manaraa.com

137

Callaway, C. B., Dzikovska, M., Farrow, E., Marques-Pita, M., Matheson, C., & Moore, J. D.

(2007). The Beetle and BeeDiff tutoring systems. Proceedings of the SLaTE Workshop

on Speech and Language Technology in Education.

Cameron, J., & Pierce, W. D. (1994). Reinforcement, reward, and intrinsic motivation: A

meta-analysis. Review of Educational Research, 64(3), 363.

Carletta, J. (1996). Assessing agreement on classification tasks: The Kappa statistic.

Computational Linguistics, 22(2), 249-254.

Chi, M., Jordan, P., VanLehn, K., & Hall, M. (2008). Reinforcement learning-based feature

selection for developing pedagogically effective tutorial dialogue tactics. Proceedings of

the 1st International Conference on Educational Data Mining, Montreal, Canada. 258-

265.

Chi, M., Jordan, P., VanLehn, K., & Litman, D. (2009). To elicit or to tell: Does it matter?

Proceedings of the 14th International Conference on Artificial Intelligence in Education,

197-204.

Chi, M., VanLehn, K., & Litman, D. (2010). Do micro-level tutorial decisions matter:

Applying reinforcement learning to induce pedagogical tutorial tactics. Proceedings of

the 10th International Conference on Intelligent Tutoring Systems, 224-234.

Chi, M. T. H., Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-explanations

improves understanding. Cognitive Science, 18(3), 439-477.

Chi, M. T. H., Roy, M., & Hausmann, R. G. M. (2008). Observing tutorial dialogues

collaboratively: Insights about human tutoring effectiveness from vicarious learning.

Cognitive Science, 32(2), 301-341.

Chi, M. T. H., Siler, S. A., Jeong, H., Yamauchi, T., & Hausmann, R. G. (2001). Learning

from human tutoring. Cognitive Science, 25(4), 471-533.

www.manaraa.com

138

Chotimongkol, A. (2008). Learning the structure of task-oriented conversations from the

corpus of in-domain dialogs. (Unpublished Ph. D. Dissertation). Carnegie Mellon

University School of Computer Science.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and

Psychological Measurement, 20(1), 37-46.

Cohen, P. A., Kulik, J. A., & Kulik, C. L. C. (1982). Educational outcomes of tutoring: A

meta-analysis of findings. American Educational Research Journal, 19(2), 237-248.

Core, M., & Allen, J. (1997). Coding dialogs with the DAMSL annotation scheme. AAAI

Fall Symposium on Communicative Action in Humans and Machines, 28–35.

Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a

multidimensional approach. Journal of Personality and Social Psychology, 44(1), 113-

126.

De Marneffe, M. C., MacCartney, B., & Manning, C. D. (2006). Generating typed

dependency parses from phrase structure parses. Proceedings of the 5th International

Conference on Language Resources and Evaluation (LREC 2006), Genoa, Italy.

De Veaux, R. D., Velleman, P. F., & Bock, D. E. (2005). Stats: Data and models. Addison-

Wesley Longman.

Deci, E. L., Koestner, R., & Ryan, R. M. (2001). Extrinsic rewards and intrinsic motivation

in education: Reconsidered once again. Review of Educational Research, 71(1), 1-27.

Dickinson, L. (1995). Autonomy and motivation: A literature review. System, 23(2), 165-

174.

Dzikovska, M. O., Callaway, C. B., Farrow, E., Marques-Pita, M., Matheson, C., & Moore, J.

D. (2006). Adaptive tutorial dialogue systems using deep NLP techniques. The Annual

Conference of the North American Chapter of the Association for Computational

Linguistics and Human Language Technologies (NAACL-HLT), 5-10.

www.manaraa.com

139

Elliot, A. J., & McGregor, H. A. (2001). A 2 x 2 achievement goal framework. Journal of

Personality and Social Psychology, 80(3), 501-519.

Evens, M., & Michael, J. (2006). One-on-one tutoring by humans and computers. Mahwah,

New Jersey: Lawrence Erlbaum Associates.

Fine, S., Singer, Y., & Tishby, N. (1998). The hierarchical hidden Markov model: Analysis

and applications. Machine Learning, 32(1), 41-62.

Forbes-Riley, K., & Litman, D. (2005). Using bigrams to identify relationships between

student certainness states and tutor responses in a spoken dialogue corpus. Proceedings

of the 6th SIGdial Workshop on Discourse and Dialogue, 87-96.

Forbes-Riley, K., Litman, D., Huettner, A., & Ward, A. (2005). Dialogue-learning

correlations in spoken dialogue tutoring. Proceedings of the 12th International

Conference on Artificial Intelligence in Education, Amsterdam. 225-232.

Forbes-Riley, K., & Litman, D. J. (2005). Using bigrams to identify relationships between

student certainness states and tutor responses in a spoken dialogue corpus. Proceedings

of the 6th SIGdial Workshop on Discourse and Dialogue, 87-96.

Forbes-Riley, K., Rotaru, M., Litman, D. J., & Tetreault, J. (2007). Exploring affect-context

dependencies for adaptive system development. Proceedings of NAACL HLT (Short

Papers), 41-44.

Forbes-Riley, K., & Litman, D. (2009). Adapting to student uncertainty improves tutoring

dialogues. Proceedings of the 14th International Conference on Artificial Intelligence

and Education, 33-40.

Fossati, D., Eugenio, B. D., Brown, C., & Ohlsson, S. (2008). Learning linked lists:

Experiments with the iList system. Proceedings of the 9th International Conference on

Intelligent Tutoring Systems 80-89.

www.manaraa.com

140

Fossati, D., Di Eugenio, B., Brown, C., Ohlsson, S., Cosejo, D., & Chen, L. (2009).

Supporting computer science curriculum: Exploring and learning linked lists with iList.

IEEE Transactions on Learning Technologies, 2(2), 107-120.

Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, C., & Chen, L. (2010). Generating proactive

feedback to help students stay on track. Proceedings of the 10th International

Conference on Intelligent Tutoring Systems, 315-317.

Fox, B. A. (1993). The human tutorial dialogue project. Hillsdale, New Jersey: Lawrence

Erlbaum Associates.

Frampton, M., & Lemon, O. (2009). Recent research advances in reinforcement learning in

spoken dialogue systems. The Knowledge Engineering Review, 24(4), 375-408.

Glass, M., Kim, J. H., Evens, M. W., Michael, J. A., & Rovick, A. A. (1999). Novice vs.

expert tutors: A comparison of style. The 10th Midwest Artificial Intelligence and

Cognitive Science Conference, 43-49.

Graesser, A. C., Chipman, P., Haynes, B. C., & Olney, A. (2005). AutoTutor: An intelligent

tutoring system with mixed-initiative dialogue. IEEE Transactions on Education, 48(4),

612-618.

Graesser, A. C., Lu, S., Jackson, G. T., Mitchell, H. H., Ventura, M., Olney, A., & Louwerse,

M. M. (2004). AutoTutor: A tutor with dialogue in natural language. Behavior Research

Methods Instruments and Computers, 36(2), 180-192.

Graesser, A. C., & Person, N. K. (1994). Question asking during tutoring. American

Educational Research Journal, 31(1), 104.

Graesser, A. C., Person, N. K., & Magliano, J. P. (1995). Collaborative dialogue patterns in

naturalistic one-to-one tutoring. Applied Cognitive Psychology, 9(6), 495-522.

Graesser, A. C., Rus, V., & Cai, Z. (2008). Question classification schemes. Proceedings of

the 1st Workshop on Question Generation, Arlington, Virginia.

www.manaraa.com

141

Graesser, A. C., Wiemer-Hastings, K., Wiemer-Hastings, P., & Kreuz, R. (1999). AutoTutor:

A simulation of a human tutor. Cognitive Systems Research, 1(1), 35-51.

Guzdial, M., & Tew, A. E. (2006). Imagineering inauthentic legitimate peripheral

participation: An instructional design approach for motivating computing education.

Proceedings of the Second International Computing Education Research Workshop

(ICER), Canterbury, United Kingdom. 51-58.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. (2009). The

WEKA data mining software: An update. SIGKDD Explorations, 11(1), 10-18.

Hardy, H., Biermann, A., Inouye, R. B., McKenzie, A., Strzalkowski, T., Ursu, C., Webb, N.,

& Wu, M. (2006). The Amitiés system: Data-driven techniques for automated dialogue.

Speech Communication, 48(3-4), 354-373.

Hausmann, R. G., Chi, M. T. H., & Roy, M. (2004). Learning from collaborative problem

solving: An analysis of three hypothesized mechanisms. Conference of the Cognitive

Science Society, 547-552.

Heeman, P. A. (2007). Combining reinforcement learning with information-state update

rules. Proceedings of NAACL HLT, 268-275.

Henderson, J., Lemon, O., & Georgila, K. (2008). Hybrid reinforcement/supervised learning

of dialogue policies from fixed data sets. Computational Linguistics, 34(4), 487-511.

Ho, C. W., Raha, S., Gehringer, E., & Williams, L. (2004). Sangam: A distributed pair

programming plug-in for eclipse. Proceedings of the OOPSLA Workshop on Eclipse

Technology Exchange, 73-77.

Holt, P., Dubs, S., Jones, M., & Greer, J. (1994). The state of student modelling. Student

Modelling: The Key to Individualized Knowledge-Based Instruction, 3-35.

Jackson, G. T., & Graesser, A. C. (2007). Content matters: An investigation of feedback

categories within an ITS. Proceedings of the 13th International Conference on Artificial

Intelligence in Education, 127-134.

www.manaraa.com

142

Johnson, W. L., & Soloway, E. (1985). PROUST: An automatic debugger for PASCAL

programs. BYTE, 10(4), 179-190.

Jordan, P., Makatchev, M., Pappuswamy, U., VanLehn, K., & Albacete, P. (2006). A natural

language tutorial dialogue system for physics. Proceedings of the Florida Artificial

Intelligence Research Society (FLAIRS) Conference, 521-526.

Jurafsky, D., & Martin, J. H. (2008). Speech and language processing. Upper Saddle River,

New Jersey: Pearson.

Keller, J. M. (1983). Motivational design of instruction. In C. M. Reigeluth (Ed.),

Instructional-design theories and models (pp. 386-434) Hillsdale: Erlbaum.

Kelly, D., & Weibelzahl, S. (2006). Raising confidence levels using motivational

contingency design techniques. Proceedings of the 8th International Conference on

Artificial Intelligence in Education, 535-544.

Kersey, C., Di Eugenio, B., Jordan, P., & Katz, S. (2009). KSC-PaL: A peer learning agent

that encourages students to take the initiative. Proceedings of the NAACL HLT

Workshop on Innovative use of NLP for Building Educational Applications, Boulder,

Colorado. 55-63.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring

goes to school in the big city. International Journal of Artificial Intelligence in

Education, 8(1), 30-43.

Kumar, R., Rosé, C., Aleven, V., Iglesias, A., & Robinson, A. (2006). Evaluating the

effectiveness of tutorial dialogue instruction in an exploratory learning context.

Proceedings of the 8th International Conference on Intelligent Tutoring Systems, 666-

674.

Kumar, R., Rosé, C. P., Yi-Chia, W., Joshi, M., & Robinson, A. (2007). Tutorial dialogue as

adaptive collaborative learning support. Proceedings of the International Conference on

Artificial Intelligence in Education, 383-393.

www.manaraa.com

143

Landis, J. R., & Koch, G. (1977). The measurement of observer agreement for categorical

data. Biometrics, 33(1), 159-174.

Lane, H. C. (2004). Natural language tutoring and the novice programmer. (Unpublished Ph.

D. Dissertation). University of Pittsburgh Department of Computer Science.

Lane, H. C., & VanLehn, K. (2004). A dialogue-based tutoring system for beginning

programming. Proceedings of the Seventeenth International Florida Artificial

Intelligence Research Society Conference (FLAIRS), 449–454.

Lane, H. C., & VanLehn, K. (2005). Teaching the tacit knowledge of programming to

novices with natural language tutoring. Computer Science Education, 15(3), 183-201.

Layman, L., Williams, L., & Slaten, K. (2007). Note to self: Make assignments meaningful.

Proceedings of the 38th SIGCSE Technical Symposium on Computer Science Education,

Covington, Kentucky. 459-463.

Lepper, M. R., Woolverton, M., Mumme, D. L., & Gurtner, J. L. (1993). Motivational

techniques of expert human tutors: Lessons for the design of computer-based tutors. In

S. P. Lajoie, & S. J. Derry (Eds.), Computers as cognitive tools (pp. 75-105). Hillsdale,

New Jersey: Lawrence Erlbaum Associates.

Levin, E., Pieraccini, R., & Eckert, W. (2000). A stochastic model of human-machine

interaction for learning dialog strategies. IEEE Transactions on Speech and Audio

Processing, 8(1), 11-23.

Lister, R., Berglund, A., Box, I., Cope, C., Pears, A., Avram, C., Bower, M., Carbone, A.,

Davey, B., & de Raadt, M. (2007). Differing ways that computing academics understand

teaching. Proceedings of the Ninth Australasian Conference on Computing Education,

97-106.

Litman, D., & Forbes-Riley, K. (2006). Correlations between dialogue acts and learning in

spoken tutoring dialogues. Natural Language Engineering, 12(2), 161-176.

www.manaraa.com

144

Litman, D., Moore, J., Dzikovska, M., & Farrow, E. (2009). Using natural language

processing to analyze tutorial dialogue corpora across domains and modalities.

Proceedings of the 14th International Conference on Artificial Intelligence in Education,

149-156.

Litman, D. J., Rosé, C. P., Forbes-Riley, K., VanLehn, K., Bhembe, D., & Silliman, S.

(2006). Spoken versus typed human and computer dialogue tutoring. International

Journal of Artificial Intelligence in Education, 16(2), 145-170.

Litman, D., & Silliman, S. (2004). ITSPOKE: An intelligent tutoring spoken dialogue

system. Proceedings of the North American Association for Computational Linguistics

and Human Language Technologies Conference (NAACL HLT), 5-8.

Loper, E., & Bird, S. (2004). NLTK: The natural language toolkit. Proceedings of the ACL

Demonstration Session, Barcelona, Spain. 214-217.

Machanick, P. (2007). A social construction approach to computer science education.

Computer Science Education, 17(1), 1-20.

Marineau, J., Wiemer-Hastings, P., Harter, D., Olde, B., Chipman, P., Karnavat, A.,

Pomeroy, V., Rajan, S., & Graesser, A. (2000). Classification of speech acts in tutorial

dialog. Proceedings of the ITS 2000 Workshop on Modelling Human Teaching Tactics

and Strategies, 65-71.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., & Balik, S. (2003).

Improving the CS1 experience with pair programming. Proceedings of the 34th SIGCSE

Technical Symposium on Computer Science Education, Reno, Nevada. 359-362.

Ohlsson, S. (1994). Constraint-based student modeling. In J. E. Greer, & G. I. McCalla

(Eds.), Student modelling: The key to individualized knowledge-based instruction

(pp. 167-189). Berlin: Springer-Verlag.

www.manaraa.com

145

Ohlsson, S., Di Eugenio, B., Chow, B., Fossati, D., Lu, X., & Kershaw, T. C. (2007). Beyond

the code-and-count analysis of tutoring dialogues. Proceedings of the 13th International

Conference on Artificial Intelligence in Education, 349-356.

Porayska-Pomsta, K., & Pain, H. (2004). Providing cognitive and affective scaffolding

through teaching strategies: Applying linguistic politeness to the educational context.

Proceedings of the 7th International Conference on Intelligent Tutoring Systems,

Alagoas, Brazil. 77-86.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130-137.

Purandare, A., & Litman, D. (2008). Content-learning correlations in spoken tutoring dialogs

at word, turn and discourse levels. Proceedings of the 21st International FLAIRS

Conference, 195-200.

Purver, M., Kording, K. P., Griffiths, T. L., & Tenenbaum, J. B. (2006). Unsupervised topic

modelling for multi-party spoken discourse. Proceedings of the 21st International

Conference on Computational Linguistics and 44th Annual Meeting of the ACL, Sydney,

Australia. 17-24.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2), 257-286.

Rebolledo-Mendez, G., du Boulay, B., & Luckin, R. (2006). Motivating the learner: An

empirical evaluation. Proceedings of the 8th International Conference on Intelligent

Tutoring Systems, Jhongli, Taiwan. 545-554.

Rosé, C., Bhembe, D., Siler, S., Srivastava, R., & VanLehn, K. (2003). The role of why

questions in effective human tutoring. Proceedings of the International Conference on

Artificial Intelligence in Education, 55-62.

Rosé, C. P., Aleven, V., & Torrey, C. (2004). CycleTalk: Supporting reflection in design

scenarios with negotiation dialogue. CHI Workshop on Designing for Reflective

Practitioners: Sharing and Assessing Progress by Diverse Communities.

www.manaraa.com

146

Rosé, C. P., Moore, J. D., VanLehn, K., & Allbritton, D. (2001). A comparative evaluation of

Socratic versus didactic tutoring. Proceedings of the Twenty-Third Annual Conference of

the Cognitive Science Society, 897–902.

Rosé, C. P., Torrey, C., Aleven, V., Robinson, A., Wu, C., & Forbus, K. (2004). CycleTalk:

Toward a dialogue agent that guides design with an articulate simulator. Proceedings of

the 7th International Conference on Intelligent Tutoring Systems, 401-411.

Schegloff, E., & Sacks, H. (1973). Opening up closings. Semiotica, 7(4), 289-327.

Scott, S. L. (2002). Bayesian methods for hidden Markov models: Recursive computing in

the 21st century. Journal of the American Statistical Association, 97(457), 337-352.

Shute, V. J. (2007). Focus on formative feedback. Princeton, NJ: ETS.

Singh, S., Litman, D., Kearns, M., & Walker, M. (2002). Optimizing dialogue management

with reinforcement learning: Experiments with the NJFun system. Journal of Artificial

Intelligence Research, 16, 105-133.

Slaten, K. M., Droujkova, M., Berenson, S., Williams, L., & Layman, L. (2005).

Undergraduate student perceptions of pair programming and agile software

methodologies: Verifying a model of social interaction. Proceedings of AGILE, Denver,

Colorado. 323-330.

Soh, L. K., Samal, A., & Nugent, G. (2007). An integrated framework for improved

computer science education: Strategies, implementations, and results. Computer Science

Education, 17(1), 59-83.

Sridhar, V. K. R., Bangalore, S., & Narayanan, S. (2009). Combining lexical, syntactic and

prosodic cues for improved online dialog act tagging. Computer Speech & Language,

23(4), 407-422.

Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R., Jurafsky, D., Taylor, P., Martin,

R., Van Ess-Dykema, C., & Meteer, M. (2000). Dialogue act modeling for automatic

www.manaraa.com

147

tagging and recognition of conversational speech. Computational Linguistics, 26(3),

339-373.

Tan, J., & Biswas, G. (2006). The role of feedback in preparation for future learning: A case

study in learning by teaching environments. Proceedings of the 8th International

Conference on Intelligent Tutoring Systems, Jhongli, Taiwan. 370-381.

Tetreault, J. R., & Litman, D. J. (2008). A reinforcement learning approach to evaluating

state representations in spoken dialogue systems. Speech Communication, 50(8-9), 683-

696.

Toney, D., Moore, J., & Lemon, O. (2006). Evolving optimal inspectable strategies for

spoken dialogue systems. Proceedings of the NAACL Human Language Technology

Conference, Companion Volume, 173-176.

VanLehn, K. (2008). The interaction plateau. Keynote talk presented at the Proceedings of

the 9th International Conference on Intelligent Tutoring Systems, Montreal, Canada.

VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A., & Rosé, C. P. (2007).

When are tutorial dialogues more effective than reading? Cognitive Science, 31(1), 3-62.

VanLehn, K., Jordan, P. W., Rosé, C. P., Bhembe, D., Bottner, M., Gaydos, A., Makatchev,

M., Pappuswamy, U., Ringenberg, M., & Roque, A. (2002). The architecture of Why2-

atlas: A coach for qualitative physics essay writing. Proceedings of the International

Conference on Intelligent Tutoring Systems, 158-167.

Walker, M., & Whittaker, S. (1990). Mixed initiative in dialogue: An investigation into

discourse segmentation. Proceedings of the 28th Annual Meeting of the Association for

Computational Linguistics, Pittsburgh, Pennsylvania. 70-78.

Wang, N., Johnson, W. L., Rizzo, P., Shaw, E., & Mayer, R. E. (2005). Experimental

evaluation of polite interaction tactics for pedagogical agents. Proceedings of the 10th

International Conference on Intelligent User Interfaces, San Diego, California. 12-19.

www.manaraa.com

148

Ward, A., & Litman, D. (2006). Cohesion and learning in a tutorial spoken dialog system.

Proceedings of FLAIRS, Melbourne Beach, FL. 533-538.

Wenger, E. (1987). Artificial intelligence and tutoring systems. Los Altos, California:

Morgan Kaufmann.

Wiedenbeck, S. (2005). Factors affecting the success of non-majors in learning to program.

Proceedings of the First International Computing Education Research Workshop

(ICER), Seattle, Washington. 13-24.

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). In support of pair

programming in the introductory computer science course. Computer Science Education,

12(3), 197-212.

Wolfe, J. (2004). Why the rhetoric of CS programming assignments matters. Computer

Science Education, 14(2), 147-163.

Wright Hastie, H., Poesio, M., & Isard, S. (2002). Automatically predicting dialogue

structure using prosodic features. Speech Communication, 36(1-2), 63-79.

Young, S. (2000). Probabilistic methods in spoken-dialogue systems. Philosophical

Transactions: Mathematical, Physical and Engineering Sciences, 358(1769), 1389-1402.

Young, S., Gasic, M., Keizer, S., Mairesse, F., Schatzmann, J., Thomson, B., & Yu, K.

(2009). The hidden information state model: A practical framework for

POMDP-based spoken dialogue management. Computer Speech and Language, 24(2),

150-174.

Zhou, Y., & Evens, M. W. (1999). A practical student model in an intelligent tutoring

system. The 11th IEEE International Conference on Educational Tools with Artificial

Intelligence, 13-18.

Zinn, C., Moore, J. D., & Core, M. G. (2002). A 3-tier planning architecture for managing

tutorial dialogue. Proceedings of the 6th International Conference on Intelligent

Tutoring Systems, 574-584.

www.manaraa.com

149

Zweben, S. (2008). Undergraduate enrollment in computer science trends higher; doctoral

production continues at peak levels. Computing Degree and Enrollment Trends from the

2007-2008 Taulbee Survey.

www.manaraa.com

150

APPENDICES

www.manaraa.com

151

APPENDIX A: Select materials for Study I

Table 11. Programming exercise for pilot studies I and II35

Postal Bar Codes

The Problem:
For faster sorting of letters, the United States Postal Service encourages companies that
send large volumes of mail to use a bar code denoting the ZIP code. Using the skeleton
GUI program provided for you, you will complete this lab with code to actually generate the
bar code for a given zip code.

More About Bar Codes:
In postal bar codes, there is a full-height frame bar on each end (and these are drawn
automatically by the program provided for you; you don't have to write code to draw these).
Each of the five encoded digits is represented by five bars. The five encoded digits are
followed by a correction digit.

35
 Adapted directly from NC State University CSC 116 laboratory manual, Spring 2006

www.manaraa.com

152

The Correction Digit
The correction digit is computed as follows: Add up all digits, and choose the correct digit
to make the sum a multiple of 10.For example, the ZIP code 95014 has sum of digits 19,
so the correction digit is 1 to make the sum equal to 20.

What’s Already Written?
You can see what parts of this program are already written by running the file Main. java.
When you do, you should see output like the image below, with a blank zip code slot. You
can enter a zip code, and you should see that no bar code is generated (except the first
and last full bars which are required for all bar codes).

What’s Your Task?
Your job is to take this five-digit zip code and use it to generate a bar code. The
PostalFrame class is the one which handles this task. The three methods which you must
complete are:
 extractDigits()
 calculateAndDrawCDigit()
 drawZIPCode()
For extractDigits(), you will need to add a private variable to the class which stores the zip
code as separate digits.

Some Helpful Information
- If you can’t remember how to do something with the software, please refer to the

reference sheet on your desk.

- This lab involves a package named postal. This package contains classes Bar,

FullBar, PostalBarCode, and SmallBar. The reason these classes are grouped into
a package, is that the classes of the postal package logically belong together to
accomplish a task. Whenever you need to use things from one package outside of

www.manaraa.com

153

that package, you just import the package. This has already been done for you in
Main and PostalFrame – you will see the statement import postal. * at the top. In
addition to code already provided, you will need to call methods in the
PostalBarCode class from your PostalFrame class to draw full and small bars.

- Each digit of the ZIP code and the correction digit are encoded according to the

following table (each digit has five bars -- a zero is a half bar and a one is a full
bar). This scheme represents all combinations of two full and three half bars.

Digit
0 1 1 0 00
1 0 00 1 1
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 1 0 00 1
8 1 0 0 1 0
9 1 0 1 0 0

www.manaraa.com

154

Table 12. Student pre-survey for pilot study I

Please rate how certain you are that you can complete a one-hour laboratory

assignment in the situations described below.

Rate your degree of confidence by recording a number from 0 to 100 using the scale

given below:

0 10 20 30 40 50 60 70 80 90 100

Cannot Moderately Highly certain
do at certain can do can do

all

 Confidence

 (0-100)

Complete a simple lab on my own ______

Complete a challenging lab on my own

Complete a challenging lab if I am paired with a classmate

Complete a challenging lab if I work with an educational robot

designed to act as my programming partner

Please rate the degree to which you agree or disagree with the following statements

using the scale given below:

 1 2 3 4

 Strongly Mostly Mostly Strongly

 Disagree Disagree Agree Agree

1. I usually enjoy CSC 116 labs.

2. I usually find CSC 116 labs easy.

3. I already understand the material I will need for today’s lab.

4. I am often frustrated by CSC 116 labs.

www.manaraa.com

155

Table 13. Student post-survey for pilot study I

Please rate how certain you are that you can complete a one-hour laboratory

assignment in the situations described below.

Rate your degree of confidence by recording a number from 0 to 100 using the scale

given below:

0 10 20 30 40 50 60 70 80 90 100

Cannot Moderately Highly certain
do at certain can do can do

all

Please rate how certain you are that you could complete a future one-hour laboratory

assignment in the situations described below.

 Confidence

 (0-100)

Complete a simple lab using the system ______

Complete a challenging lab using the system

Please rate the degree to which you agree or disagree with the following statements

using the scale given below:

 1 2 3 4

 Strongly Mostly Mostly Strongly

 Disagree Disagree Agree Agree

5. I enjoyed today’s lab.

6. Using the system did not save me any time in completing the lab assignment

compared to working on my own.

7. Today’s lab assignment was frustrating.

8. If given the chance, I would use the system again in a lab.

9. Today’s lab problem was challenging for me.

10. Using the system helped me understand the material better than if I had worked

on my own.

11. The system is difficult to use.

12. If given the chance, I would use the system on my own time for programming

projects.

www.manaraa.com

156

Please choose one answer for each question.

13. My programming partner was:

a. far less skilled than me

b. a little less skilled than me

c. about the same skill level as me

d. a little more skilled than me

e. far more skilled than me

14. My programming partner:

a. asked too many questions

b. asked just the right amount of questions

c. should have asked more questions

15. When I asked a question, my programming partner:

a. usually responded with a helpful answer

b. usually responded with an answer that was not helpful

c. usually did not respond to my question

d. I did not ask any questions

16. I believe my programming partner was a(n):

a. educational software robot

b. professor

c. graduate student

d. CSC 116 classmate

e. other: ________________

17. I imagined my programmer partner’s race was:

a. Caucasian

b. African American

c. Native American

d. Hispanic

e. Asian

f. Other: ________________

g. I did not imagine my partner’s race

18. I imagined my programmer partner’s gender was:

a. Male

b. Female

c. I did not imagine my partner’s gender

19. I imagined my programming partner’s age was:

www.manaraa.com

157

a. 18-20

b. 21-22

c. 23-25

d. 26-30

e. 31-40

f. 41-50

g. over 50

h. I did not imagine my partner’s age

20. What I liked least about the system was: ________________________________.

21. What I liked best about the system was: _________________________________.

22. Additional Comments:

www.manaraa.com

158

Table 14. Student pre-test for pilot study I

Circle the best answer for each question.

1. Consider the following line of java code:

int z;

 Is z a primitive type, or an object?

a) Primitive type

b) Object

c) Neither

2. Consider the following line of java code:

String s;

 Is s a primitive type, or an object?

a) Primitive type

b) Object

c) Neither

3. Which of these is true of an array in java?

a) It‘s exactly the same thing as a String

b) It‘s an object which stores more than one value and can be indexed to access the

values

c) It‘s an object whose size you never have to declare

d) It‘s a primitive type which can only hold three or less integers

e) Both a and c

f) Both b and d

g) None of these

4. Which of the following statements correctly converts int x to a String?

a) String s = x. toString();

b) String s = Integer. parseInt(x);

c) String s = x + ―‖;

www.manaraa.com

159

d) Both a and c

e) Both b and c

f) None of these

5. Which of the following statements correctly accesses the n
th

 character in String s?

a) s [n]

b) s. charAt(n)

c) s. length

d) both a and b

e) both a and c

f) None of these

6. Consider a String s = ―90210‖. Which of the following statements returns the ‗1‘ in

this String?

a) s. charAt(1);

b) s. charAt(2);

c) s. charAt(3);

d) s. charAt(4);

e) s. length();

f) None of these

7. Consider the following code:

for (int k = 0; _______; k++)

system. out. println(array[k]);

How can you fill in the blank to correctly traverse an array of 11 values?

a) k<11

b) k<=11

c) k> 10

d) k< 10

e) k<= 10

f) both b and c

g) both a and e

h) None of these

8. Write java code to declare and instantiate an array named bools of 30 booleans.

a) arraybools = new array of Booleans;

b) int [] bools = new int[30];

www.manaraa.com

160

c) Boolean [] bools = new Boolean[30];

d) Any of these will work

e) None of these

9. Imagine you have a five-digit number, such as 32,451. Which of the following finds

the remainder when this number is divided by 10?

a) 32451 & 10

b) 32451 / 10

c) 32451 % 10

d) 32451 – 10

e) None of these

10.Imagine you have a three-digit number such as 798. What is the result of performing the

java statement 798 / 100?

a) 79. 8

b) 79

c) 7

d) 7. 98

www.manaraa.com

161

Table 15. Student post-test for pilot study I

Circle the best answer for each question.

1. True or False: int in java is a primitive type

2. True or False: String in java is a primitive type

3. When might we use arrays in java?

a) To hold a bunch of characters, but never numbers.

b) To hold a set of values of any type so we can index into the array and retrieve

them.

c) When we do not know how large a set of values we need to hold.

d) When we need to store five or less integers

e) Both a and c

f) Both b and d

g) None of these

4. You have an int x = 31. What type should the variable y be in order to legally

perform y = Integer. parseInt[x]?

a) int

b) Integer

c) String

d) Char []

e) None of these

5. Consider an array:

int [] x = new int [40];

How do we access the first element in this array?

a) x[0]

b) x[1]

c) x. charAt(0)

www.manaraa.com

162

d) x. intAt(1)

e) None of these

6. Consider a String s = ―54321‖. What is the result of the statement s. charAt(2)?

a) 5

b) 4

c) 3

d) 2

e) 1

f) None of these

7. Consider the following code:

int [] a = new int [23];

Fill in the blank in the following code to traverse array a.

for (int c = ___; c < 23; c++)

 System. out. println(a[c]);

a) 1

b) 23

c) 0

d) false

e) None of these

8. Write java code to declare an instantiate an array named chars of 30 chars.

a) char [] 30 = new char;

b) char [] chars = new chars;

c) array chars = new array (char);

d) char [] chars = new char[30];

e) Any of these will work

f) None of these

9. Imagine you have a five-digit number, such as 47,998. What is the result of the java

statement 47998 % 10?

www.manaraa.com

163

a) 4

b) 7

c) 9

d) 8

e) None of these

10. Imagine you have a three-digit number such as 364. You want to extract the first

digit, the 3, and store it into an int d. How can you do this?

a) int d = 364 % 10;

b) int d = 364 / 10;

c) int d = 364 – 10;

d) int d = 364 & 10;

e) None of these

www.manaraa.com

164

APPENDIX B: Materials for Main Study

Table 16. Programming exercise for main study

Waimea County Ambulance Study
Problem Description

To help ensure the safety of their residents, the Waimea County
Emergency Response office is re-assessing their ambulance
dispatch system. A study has already been conducted to gather
data about the ambulance response times to 911 calls. You have
been hired to analyze this data and help the emergency response
office answer some questions about how quickly their ambulances
are able to reach people in need. You’ll be taking over for Maddie,
the previous developer who was recently promoted.

Maddie already completed the class called Ambulance. java,
which is a driver for the whole program (it contains the main method). She also completed
AmbulanceGUI. java, which is used for displaying the ambulance response times graphically. You
just need to complete a few methods in the AmbulanceData class to finish this project!

1. In the AmbulanceData class, you must complete the method plotTimes() so that all the
ambulance response times in the parameter array (arrayToPlot) are displayed on a graph.
Maddie already created the method outline with some comments, so you’ll just need to read
her comments and fill in the method.

Maddie had an intern draw a graph by hand for the response times. This way, you know
what the output of your program is supposed to look like. The x-axis is how many minutes
an ambulance took to respond, the y-axis is a count of how many of the response times in
the data set took that long. For instance, there were three ambulance responses that took 7
minutes.

www.manaraa.com

165

2. The department is considering replacing its aging fleet with new ambulances. Because of
the county’s tight budget, these would be slightly slower ambulances than the current fleet
but the county could afford more ambulances overall. The staff believe the effects of this
change would be:
- On all response times below 5 minutes, the new fleet would take 1 minute longer to

respond.
- On all response times above 18 minutes, the new fleet would take 4 fewer minutes to

respond.
- Other response times would remain the same.
Complete the method newFleetProjections() which creates a new array of hypothetical
response times given the above effects of the new fleet. You will need to create a new array
because you must not overwrite the true response times in the original array.

3. There is more analysis work than Maddie originally thought, so one of your colleagues,

Shannon, is writing a set of methods that perform the statistical analysis so your group can
give a detailed report to the Waimea County authorities. Shannon’s code needs to be able
to pass an array of unsorted times to a sortArray method, and get back an array of sorted
times. Write a method called sortArray in the AmbulanceData class. The sortArray method

www.manaraa.com

166

should take an array of doubles as a parameter, and return a sorted ascending version of
the parameter array without overwriting the contents of the original array.
 The next page has some details of how your sort method should work.

www.manaraa.com

167

Table 17. Student pre-survey for main study

Please rate how certain you are that you can do each of the things described below by writing the

appropriate number.

Rate your degree of confidence by recording a number from 0 to 100 using the scale given below:

 0 10 20 30 40 50 60 70 80 90 100

Cannot do

at all

 Moderately

can do

 Highly certain

Can do

 Confidence

(0-100)

Learn Computer Science. ________

Learn CSC 116 course material. ________

Complete a simple programming exercise on my own. ________

Complete a challenging programming exercise on my own. ________

Complete a challenging programming exercise if I am in a lab

where a TA is available to help me. ________

Explain for-loops to others well. ________

Explain arrays to others well. ________

Explain method calls to others well. ________

Use for-loops in a programming exercise correctly and
effectively. ________
Use arrays in a programming exercise correctly and effectively. ________
Make method calls correctly and effectively. ________

www.manaraa.com

168

Please rate the degree to which you agree or disagree with the following statements:

Not At All Moderate

Very

Much

I usually enjoy CSC 116 course

material.
○ ○ ○ ○ ○

I usually find CSC 116 exercises

challenging.
○ ○ ○ ○ ○

I understand for-loops. ○ ○ ○ ○ ○

I understand arrays. ○ ○ ○ ○ ○

I am experienced using the eclipse
development environment.

○ ○ ○ ○ ○

I am experienced using the eclipse
development environment.

○ ○ ○ ○ ○

www.manaraa.com

169

Table 18. Pre/post-test for main study

Complete each of the following problems to the best of your ability. Even if you do not know how to

completely answer the question, fill in as much as you know.

1. Write a chunk of Java code to accomplish each of these tasks:

a. Declare an array of integer type and give it an initial size of 100.

b. Test the ith element of the array you declared in part a of this question and print “true” if
the element is equal to 5 and “false” otherwise. Assume that i has already been declared
and initialized.

c. Set the ith element of the array you declared in part a of this question to be 5. Again,
assume that i has already been declared and initialized.

2. Write a piece of Java code that prints “Cowabunga!” exactly 73 times. System. out. println can
be used to print the string.

3. In a Java program, an array named firstArray of type int has been created and initialized. Write a
line of Java code to create an array named secondArray that is the same size and same type as
firstArray. The contents of secondArray do not need to be initialized to be the same as the
contents of firstArray.

4. An array a has already been declared as an array of integers in Java.
a. Assuming i and j are integers in the range of a, write a piece of Java code to swap the

values located at a[i] and a[j].

b. Write a piece of Java code to print the elements of a in the order they appear in the
array.

c. Write a piece of Java code to print the elements of a in the reverse order they appear in
the array.

www.manaraa.com

170

Table 19. Student post-survey for main study

Please rate how certain you are that you can do each of the things described below by writing the
appropriate number.

Rate your degree of confidence by recording a number from 0 to 100 using the scale given below:

 0 10 20 30 40 50 60 70 80 90 100
Cannot do

at all
 Moderately

can do
 Highly certain

Can do

 Confidence
(0-100)

Learn Computer Science. ________
Learn CSC 116 course material. ________
Complete a simple programming exercise on my own. ________
Complete a challenging programming exercise on my own. ________
Complete a challenging programming exercise if I am in a lab
where a TA is available to help me. ________
Explain for-loops to others well. ________
Explain arrays to others well. ________
Explain method calls to others well. ________
Use for-loops in a programming exercise correctly and
effectively. ________
Use arrays in a programming exercise correctly and effectively. ________
Make method calls in a programming exercise correctly and
effectively. ________

Please rate the degree to which you agree or disagree with the following statements:
Not at all Moderate Very much

I enjoyed today’s programming exercise. ○ ○ ○ ○ ○

Today’s programming exercise was frustrating. ○ ○ ○ ○ ○

I understand for-loops. ○ ○ ○ ○ ○

I understand arrays. ○ ○ ○ ○ ○

www.manaraa.com

171

Given the chance, I would use this software again
for a programming exercise. ○ ○ ○ ○ ○

Given the chance, I would work with this tutor
again for a programming exercise. ○ ○ ○ ○ ○

This software would be just as helpful if there were
no tutor there to help me. ○ ○ ○ ○ ○

The software was difficult to use. ○ ○ ○ ○ ○

Please choose one answer for each question.

1. It seems like the TA was _____ knowledgeable about programming than me:

a. far less c. about equally e. far more

b. a little less d. a little more

2.The tutor:

a. asked too many questions c. should have asked more questions

b. asked just the right amount of questions

3. When I asked a question, the tutor:

a. usually responded with a helpful answer c. usually did not respond to my question

b. usually responded with an unhelpful answer d. I did not ask any questions

4. Select a rating for each of the following:

 Not at all Moderately Very
Much

How helpful was the tutor? ○ ○ ○ ○ ○
How friendly was the tutor? ○ ○ ○ ○ ○
How empathetic was the tutor? ○ ○ ○ ○ ○
How knowledgeable was the tutor? ○ ○ ○ ○ ○
How genuine was the tutor? ○ ○ ○ ○ ○
How kind was the tutor? ○ ○ ○ ○ ○

5. What I liked least about working with the tutor was:

6. What I liked best about working with the tutor was:

7. Additional comments:

