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ABSTRACT 
 

BOYER, KRISTY ELIZABETH. Structural and Dialogue Act Modeling in Task-Oriented 

Tutorial Dialogue. (Under the direction of James C. Lester and Mladen A. Vouk.) 

   

Creating intelligent systems that bring the benefits of one-on-one human tutoring to a broad 

population of learners is a grand challenge for the field of computing. Tutorial dialogue 

systems, which engage learners in rich natural language dialogue in support of a learning 

task, hold great promise for addressing this challenge. A particularly important research 

direction involves utilizing data-driven approaches for defining the behavior of tutorial 

dialogue systems based on corpora of effective human tutoring. These data-driven 

approaches may facilitate rapid dialogue system development, give rise to flexible dialogue 

management policies, and ultimately result in a more effective learning experience for 

students. The goal of the research reported in this dissertation is to develop computational 

models of effective human tutorial dialogue. The work includes two phases of data-driven 

investigation. The first phase involves collecting, annotating, and exploring corpora, while 

the second phase involves developing and evaluating computational models of hidden 

dialogue state, student dialogue act classification, and tutor move prediction.  

Three tutorial dialogue corpora in the domain of introductory computer programming 

were collected through human tutoring studies. Exploring these corpora revealed some 

important aspects of the structure of dialogue in this complex task-oriented domain. First, 

human tutors appear to adapt to learner characteristics such as incoming knowledge level, 

self-efficacy, and gender. Second, tutors undertake a variety of cognitive and motivational 

remediation; sometimes these cognitive and motivational concerns appear to be at odds with 

each other, but it may be possible to reconcile the two goals by selecting appropriate 

feedback. Finally, compared to a highly proactive tutoring approach in which the tutor 

maintains control of the dialogue, offering more autonomy may better support students‘ 

motivation.  
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 To construct computational models of the tutorial dialogue, a hidden Markov 

modeling framework was selected because hidden Markov models (HMMs) explicitly 

represent a stochastic layer of hidden structure. One of the hypotheses of this dissertation 

states that this hidden structure corresponds to tutoring modes from the literature. The utility 

of HMM-based modeling was examined through qualitative analysis and quantitative 

comparison of classification and prediction accuracy with other types of models. Qualitative 

examination of learned HMMs indicated that their structure bears a resemblance to tutoring 

modes from the literature. Analysis also revealed that the frequency of occurrence of a subset 

of the automatically extracted tutoring modes significantly correlates with student learning, 

suggesting that HMMs can probably discover meaningful hidden dialogue structure.  

Based on these encouraging results, HMMs were also utilized to produce feature 

vectors that were used within a larger set of attributes for vector-based maximum likelihood 

classification of student dialogue acts. However, in the presence of automatically extracted 

lexical (word-based) features, the HMM‘s features did not improve the classification 

accuracy of the model. On the other hand, when the HMM approach was extended to predict 

tutorial moves within the corpus, the hidden dialogue state significantly increased prediction 

accuracy. Furthermore, explicitly modeling task structure within a hierarchical HMM 

provided a significant improvement in performance accuracy compared to a flat HMM.  

While the Intelligent Tutoring Systems field is only just beginning to understand the 

impact of natural language dialogue, affect, collaboration, and other phenomena on students‘ 

learning, the Natural Language Dialogue research community is also beginning to embrace 

complex task-oriented domains as a focus for system development. This work takes an 

important step toward creating fully data-driven tutorial dialogue management models that 

may address the high development cost and barriers to effectiveness that are associated with 

the current generation of dialogue systems.  
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CHAPTER 1    

Introduction 

One-on-one human tutoring is a highly effective mode of instruction that generally results in 

significantly higher student learning than group classroom instruction (Bloom, 1984; Chi et 

al., 2001; Cohen et al., 1982; VanLehn et al., 2007). Bringing this highly effective 

instruction to learners is a primary focus of research on intelligent tutoring systems (ITSs). 

This research has adapted and created methods and technologies applicable to education, 

often in the form of intelligent tutoring systems (Wenger, 1987). One of the grand challenges 

for the field of computing today has been identified as providing a teacher for every learner,
1
 

and today‘s ITSs have made great strides toward that goal. However, the field has not yet 

seen ITSs that meet or exceed the learning gains achieved with expert human tutors 

(VanLehn, 2008). One hypothesis is that the greater effectiveness of human tutoring lies with 

the natural language dialogue exchanged between tutor and student (Graesser et al., 1995). 

This hypothesis states that intelligent systems will not achieve human-like effectiveness as 

tutors until the systems can engage in rich natural language dialogue with students. This 

hypothesis has spurred the emergence of natural language intelligent tutoring systems, known 

as tutorial dialogue systems. The work reported in this dissertation makes contributions to 

tutorial dialogue systems research by exploring corpora of tutorial dialogue and modeling 

effective human-human tutoring strategies.  

                                                 

1
 Computing Research Association‘s Grand Challenges in Information Systems, 

http://www.cra.org/uploads/documents/resources/rissues/gc.systems_.pdf 
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In addition to drawing heavily on ITS research, tutorial dialogue systems draw on 

natural language dialogue systems research, which constitutes an active line of investigation 

within the field of computational linguistics. For all dialogue systems, including tutorial 

dialogue systems, two central challenges are interpreting user (student) utterances and 

selecting system (tutor) dialogue moves.  

Interpreting user utterances involves a variety of speech and language understanding 

steps. One important aspect of the process is to identify the dialogue act, or communicative 

purpose, of each utterance (Austin, 1962). Dialogue acts provide a valuable intermediate 

representation that can be used for dialogue management because they summarize the action 

represented by a dialogue move, e.g., asking a question or giving a command.  

The need for automatic dialogue act interpretation has led to machine learning 

approaches that take into account a variety of features for data-driven dialogue act tagging 

(Bangalore et al., 2008; Hardy et al., 2006; Sridhar et al., 2009; Stolcke et al., 2000). This 

work on dialogue act interpretation has generally focused on conversational speech or on 

simple task-oriented dialogue. Complex task-oriented dialogue, such as tutorial dialogue for 

introductory computer programming, has not been extensively studied within dialogue 

systems research. A contribution of this dissertation is a machine-learned model of user 

dialogue act classification in a complex task-oriented domain.  

 A complementary task to user utterance interpretation is selecting a system dialogue 

move. Machine learning techniques for this task are also receiving increasing attention 

(Bangalore et al., 2008; Chotimongkol, 2008; Levin et al., 2000; Singh et al., 2002; Stolcke 

et al., 2000; Toney et al., 2006; Young, 2000; Young et al., 2009). These approaches 

leverage the growing set of available human-human dialogue corpora to directly author new 

computer-based dialogue system behavior. In contrast, historically the behavior of tutorial 

dialogue systems has been informed by observational studies of human tutoring followed by 

manual identification of phenomena of interest and desirable tutoring behaviors (Cade et al., 
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2008; Graesser et al., 1995; Lepper et al., 1993). Recently, the use of machine learning 

techniques has begun to make its way into tutorial dialogue research (Ai et al., 2007; Chi, M. 

et al., 2009; Tetreault & Litman, 2008; Chi, M. et al., 2010), but adapting these techniques to 

a complex task-oriented domain such as introductory computer programming is a central 

challenge. A contribution of the current research is a data-driven approach to extracting a 

tutorial dialogue management model from a corpus of effective human-human tutoring with 

hidden Markov models. These models infer the hidden dialogue state and leverage 

knowledge of the hierarchical task/subtask structure.  

This work utilizes tutorial dialogue corpora from introductory computer 

programming. Improving the student experience in an introductory computing course is 

important. Research suggests some ways to achieve that goal include encouraging students to 

pair program (Nagappan et al., 2003), providing a variety of course formats such as one in 

digital media computation (Guzdial & Tew, 2006), and maintaining smaller class sizes 

(Boyer, Dwight et al., 2007). Another contribution of the current work is a model of tutoring 

effectiveness that reveals insights into the cognitive and affective mechanisms by which 

students learn computing.  

This project contributes to the author‘s longer-term goal of creating a data-driven 

tutorial dialogue system for introductory computer science that is as effective as an expert 

human tutor. As the remainder of this chapter describes, this endeavor poses significant 

challenges, and the current work addresses some of those challenges by creating 

computational models of effective human tutoring.  

1.1 Challenges 

A number of challenges are posed by creating a tutorial dialogue system that is as effective as 

the most effective human tutors. Decades of intelligent tutoring systems research have held 

such effectiveness as their ultimate goal, but none have achieved it (VanLehn, 2008). 
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Developing tutoring systems is costly, often requiring hundreds of development hours per 

hour of tutoring instruction, and tutorial dialogue management systems have limited 

generalizability across domains (Aleven et al., 2009). The central tasks of user utterance 

interpretation and system response selection, along with how to deal with issues such as ill-

formed user input, identifying the user‘s goals within the task, and selecting a system move 

are all open problems (Bangalore et al., 2008; Tetreault & Litman, 2008). These problems 

have been less explored in the context of complex task-oriented domains than in other 

dialogue areas such as conversational speech (e.g., people talking socially on the telephone) 

or simpler task-oriented dialogue (e.g., booking an airline ticket through a telephone 

reservation system). A task focus of solving an introductory computer programming problem 

provides some structure that is absent from conversational speech, but also introduces a more 

complex and open-ended task than most of the other task-oriented domains that have been 

studied within the dialogue systems community. To address these challenges, the research 

questions and associated hypotheses in this dissertation focus on how to learn computational 

models of complex task-oriented tutorial dialogue.  

1.2 Research Questions and Hypotheses 

This project contributes to the goal of creating a data-driven tutorial dialogue system. Toward 

that end, the primary goal of this work is to discover, investigate and construct 

computational models of human tutoring in the domain of introductory computer 

programming. This project can be viewed in two phases. The first phase consists of data 

collection, annotation, and exploration to understand the structure of tutorial dialogue in 

introductory computer programming, a domain for which no sizeable corpora were 

previously available. This phase corresponds to Research Question 1 below and its associated 

hypotheses. The second phase, which involves discovering and evaluating computational 
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models on the collected corpora, corresponds to Research Question 2 below and its 

associated hypotheses.  

 

Research Question 1 (Exploratory). How do human tutors help students learn 

introductory computer programming? 

Hypothesis 1.1. Because human tutors adapt their behavior based on student 

characteristics including skill level, self-efficacy, and gender, the distribution of 

dialogue acts within human-to-human tutoring sessions are dependent on these 

student characteristics  (Section 5.1).  

Hypothesis 1.2. Because some tutoring approaches are more effective than others, 

given a tutoring context, the frequency of some tutor moves is positively correlated 

with student learning and motivational outcomes while other moves are negatively 

correlated with these outcomes (Section 5.2).  

Hypothesis 1.3. Because autonomy is an important aspect of the learning process 

that may impact cognitive and motivational outcomes differently, the level of 

autonomy given to students during tutoring is correlated with learning and 

motivational outcomes (Section 5.3).  

 

Research Question 2. How can a tutorial dialogue management model be machine 

learned directly from a corpus of human tutoring?  

Hypothesis 2.1. Hidden Markov models (HMMs) are able to discover tutoring 

modes, or hidden dialogue states, that i) qualitatively correspond to tutoring modes 

from the literature, and ii) whose frequencies of occurrence correlate with student 

learning (Sections 6.1-6.3).  

Hypothesis 2.2. The structural components of hidden dialogue state and 

task/subtask features are predictive of student dialogue acts (Chapter 7). 
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Specifically, let B1, a baseline model, be a first-order Markov (bigram) model over 

dialogue act sequences. Let model M1 be a classifier that uses lexical features 

(words, parts of speech, syntax) and structural features (speaker history, dialogue 

act history) associated with student utterances to classify the dialogue act of those 

utterances. Let M1’ be a classifier that extends M1 by additionally utilizing hidden 

dialogue state features as learned by an HMM, and manually annotated task/subtask 

structure. Then, in ten-fold stratified cross-validation, in which 90% of the data are 

used for training and 10% are used for testing, the following result will emerge:
2
  

accuracy(B1) < accuracy(M1) < accuracy(M1’) 

 

Hypothesis 2.3. The structural components of hidden dialogue state and 

task/subtask features are predictive of tutor dialogue acts (Chapter 8). Specifically, 

let B2, a baseline model, be a first-order Markov (bigram) model over dialogue act 

sequences. Let model M2 be a hidden Markov model that predicts tutor dialogue 

acts based on sequences of dialogue acts and task events. Let M2’ be a hierarchical 

hidden Markov model whose structure extends that of M2 by explicitly capturing 

the hierarchical nesting of tasks and subtasks. Then, cross-validation on the corpus 

will reveal the following result: 

accuracy(B2) < accuracy(M2) < accuracy(M2’) 

1.3 Approach 

This project utilizes a corpus-based research methodology (Figure 1). First, a corpus of 

human task-oriented tutorial dialogue was collected. The domain is introductory computer 

                                                 

2
 Accuracy is calculated as number of correctly predicted instances divided by total number of predicted 

instances. 
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programming in Java. Next, the dialogue corpus was manually annotated with dialogue acts 

designed to capture the cognitive, motivational, and affective purposes of each utterance. The 

annotation also included a separate annotation for task/subtask structure and problem-solving 

correctness. In both dialogue and task annotation, inter-rater agreement studies were 

conducted to ensure sufficient reliability of the tagging scheme. With the corpora annotated, 

exploratory analyses included Pearson‘s correlation analysis, logistic regression, and Chi-

square tests for independence of factors (De Veaux et al., 2005). These analyses address 

Hypotheses 1.1, 1.2, and 1.3 above. HMMs (Rabiner, 1989) address Hypothesis 2.1, with 

subsequent correlation analysis between the components of the HMM and the student 

learning outcomes. HMMs were also utilized, along with a vector-based logistic regression 

classifier, for the student utterance classification task of Hypothesis 2.2. Finally, HMMs and 

hierarchical HMMs (Fine et al., 1998) were learned to address the tutor move prediction task 

of Hypothesis 2.3. The models were evaluated based on their performance for the tasks of 

interest. For exploratory models this measure involves level of statistical significance. For 

classification and prediction models the accuracy is used, where the manually annotated 

dialogue act is treated as the true answer. Accuracy is calculated via stratified n-fold cross-

validation.  
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Figure 1. Corpus-based approach 



www.manaraa.com

 

 

 

9 

1.4 Terminology 

The pre- and post-measures taken during tutoring studies utilize a variety of cognitive and 

motivational outcomes. Cognitive measures deal with students‘ knowledge or understanding 

of concepts or applied skills. In this context, cognitive metrics include pre-test score, which 

measures to what extent students are familiar with the target introductory computer science 

course material prior to the tutoring session, and post-test score, which measures the 

corresponding familiarity after the tutoring session. Learning gain is calculated as post-test 

score minus pre-test score, and is used to measure how much a student learns during the 

tutoring session. The full learning gain instruments from the tutoring studies are included in 

Appendices A and B.  

 The motivational measure utilized in this work deals with self-efficacy, which is 

defined as one‘s own belief in his or her capability to produce given levels of attainment on a 

particular task (Bandura, 1997). In the context of the current research, self-efficacy questions 

asked students to rate how certain they were, on a scale of 0-100, that they could complete 

various programming tasks. This method of measuring domain-specific self-efficacy is 

adapted directly from Bandura‘s (2006) domain-specific self-efficacy scale. This dissertation 

uses the term ―self-efficacy‖ rather than ―confidence,‖ in keeping with the important 

distinction between these terms within the Educational Psychology literature. As explained 

by Bandura (1997), ―Confidence is a nonspecific term that refers to strength of belief but 

does not necessarily specify what the certainty is about. I can be supremely confident that I 

will fail at an endeavor. Perceived self-efficacy refers to belief in one's agentive capabilities, 

that one can produce given levels of attainment.‖ 

The dialogue and problem-solving traces collected during each tutoring study 

constitute a corpus, a collection of written material. The discrete data points within this 

corpus may be either dialogue moves or task actions. Dialogue moves, also called utterances, 
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are turns taken within the conversation. In the current work, these utterances were sent in 

textual instant message format between tutors and students. While ―dialogue move‖ and 

―utterance‖ refer to the actual content of the message sent during dialogue, dialogue act 

refers to the communicative purpose of the utterance. For example, the utterance, ―How do I 

declare the array?‖ would have a dialogue act label of QUESTION.  

Task actions refer to the computer programming actions that students took in pursuit 

of solving the given programming exercise, also called the task. This terminology is chosen 

in keeping with Natural Language Dialogue community‘s tradition of referring to dialogue as 

―task-oriented‖ when the dialogue focuses on a task that is being undertaken. Task-oriented 

dialogues are often undertaken collaboratively, e.g., problem-solving actions in the 

pedagogical context of tutorial dialogue. The same community also uses the term ―task‖ to 

refer to particular problems that must be addressed by a computer-based dialogue system, 

such as interpreting user input. In this dissertation, the term ―task‖ will be used to refer to 

both of the following: 1) the computer programming problem that students solved during the 

tutoring studies, as in ―task/subtask structure,‖ and 2) the natural language dialogue tasks of 

user utterance interpretation and system move selection, as in ―the task of interpreting user 

input.‖ This distinction will be made explicitly when it is not clear from the context.  

Please see the glossary for a summary of the terms above, as well as additional 

definitions.  
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1.5 Contributions 

The work reported in this dissertation has made the following novel contributions:
3
 

 Tutorial dialogue corpus. Two pilot corpora and one main corpus of textual 

human tutorial dialogue were collected in the domain of introductory computer 

programming (Boyer, Vouk et al., 2007; Boyer, Phillips et al., 2008a; Boyer, 

Phillips, Wallis et al., 2009a). All corpora were manually annotated with dialogue 

act labels. The main corpus consists of approximately 60 hours of tutoring and has 

been manually annotated with dialogue act labels, hierarchical task/subtask 

structure, and correctness of students‘ problem-solving actions.  

 Dialogue act annotation scheme. The dialogue act annotation scheme was 

inspired by schemes for conversational speech, task-oriented dialogue, and 

tutoring (Core & Allen, 1997; Forbes-Riley & Litman, 2005; Marineau et al., 

2000; Stolcke et al., 2000) and was adapted specifically to capture the 

communicative purposes of utterances in task-oriented tutorial dialogue. Inter-

rater reliability studies have established the reliability of this dialogue act 

annotation scheme.  

 Task annotation scheme. The task annotation scheme was inspired by other 

work on tutoring programming (Johnson & Soloway, 1985; Lane & VanLehn, 

2004), and was adapted to capture the hierarchical structure of the computer 

programming exercise around which the dialogue is centered. Like the dialogue 

                                                 

3
 Portions of this work have been conducted in collaboration with colleagues. Rob Phillips proposed an initial 

dialogue act tagging scheme that heavily influenced the final scheme; Michael Wallis, Amy Ingram and 

William Lahti collaborated during the refining process. Rob Phillips and Amy Ingram were also instrumental in 

devising the task annotation scheme. Eunyoung Ha implemented the base HMM learning software. August 

Dwight and Taylor Fondren developed much of the RIPPLE system.     
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act tagging schemes, inter-rater reliability studies with the task annotation scheme 

indicate that it is sufficiently reliable.  

 Software for synchronous remote tutoring of Java programming. RIPPLE 

(Remote Interactive Pair Programming and Learning Environment) was 

developed as part of the current work to support the tutoring studies (Boyer, 

Dwight et al., 2008). RIPPLE extends Sangam, an existing pair programming 

environment for Java (Ho et al., 2004) with a textual dialogue interface and real-

time database capture of all interactions.  

 Results on the Structure of Tutoring in Introductory Computer 

Programming. The exploratory results from the current work suggest ways in 

which tutors adapt to student characteristics (Boyer, Vouk et al., 2007),
4
 select 

strategies with cognitive and motivational factors in mind (Boyer, Phillips et al., 

2008a), give and take initiative (Boyer, Phillips, Wallis et al., 2009a), and ask 

questions (Boyer, Lahti et al., 2010).  

 HMM Framework for Learning Hidden Dialogue State. The hidden Markov 

model (HMM) and hierarchical hidden Markov model (HHMM) learning 

approach discovers tutoring modes, or hidden dialogue state by utilizing a 

framework that combines sequential representation of dialogue acts with 

unsupervised discovery of adjacency pairs and a hierarchical task/subtask 

structure (Boyer, Phillips, Wallis et al., 2009a). These tutoring modes are of 

intrinsic pedagogical interest (Boyer, Phillips, Wallis et al., 2009b) and have been 

shown to correlate with student learning (Boyer, Phillips, Ingram et al., 2010)
5
 

                                                 

4
 Recipient of the Best Student Paper Award at the International Conference on Artificial Intelligence in 

Education, 2007.  

5
 Best Paper Award Nominee at the International Conference on Intelligent Tutoring Systems, 2010. 
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and to aid in the classification of student dialogue acts and prediction of human 

tutor moves (Boyer, Phillips, Ha et al., 2010a; Boyer, Phillips, Ha et al., 2010b).  

 Statistical Dialogue Act Model for Student Utterance Classification. The 

models produced by this work are designed to address the complex task-oriented 

domain of introductory computer programming. This domain has characteristics 

and challenges different from those in conversational speech and from most of the 

other task-oriented domains that have been studied in dialogue systems research. 

Leveraging lexical, syntactic, dialogue history, task history, and hidden dialogue 

state features, the classifier performs comparably well to state-of-the-art 

classifiers in less complex domains (Boyer et al., In press). The automatic 

classification of dialogue acts is an important step toward data-driven automatic 

extraction of a dialogue management model (Bangalore et al., 2008).  

 HMMs and HHMMs for Tutorial Dialogue Act Prediction. The HHMM 

framework for predicting tutorial dialogue acts is a step toward data-driven 

tutorial planning (Boyer, Phillips, Ha et al., 2010a; Boyer, Phillips, Ha et al., 

2010b). The results demonstrate that hidden dialogue state, or tutoring mode, is an 

important structural element that improves the predictive power of the learned 

models on the corpus, and that explicitly representing hierarchical task/subtask 

structure within a hierarchical HMM yields a significant improvement over the 

prediction accuracy of a flat HMM.  

Together, these contributions further the field‘s understanding of the effectiveness of 

human tutoring and advance the tools and techniques available for the collection and 

modeling of tutorial dialogue.  
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1.6 Organization 

The remainder of this document is structured as follows. Chapter 2 presents background and 

related work on the effectiveness of tutorial dialogue, a historical view of tutorial dialogue 

systems, and an overview of dialogue modeling for user dialogue act classification and 

system act selection. Chapter 3 describes the tutorial dialogue studies that were conducted 

during the data collection phase of the project. Chapter 4 presents the annotation schemes for 

dialogue acts and task/subtask structure within the corpora. Chapter 5 describes the 

exploratory analyses that provided insights into the structure of tutorial dialogue in the 

complex task-oriented domain of introductory computer programming. These results speak to 

Hypotheses 1.1, 1.2, and 1.3. Chapter 6 presents machine-learned hidden Markov models of 

hidden dialogue states, discusses their structure, and examines their correlation with student 

learning (Hypothesis 2.1). Chapter 7 presents a learned model for user dialogue act 

classification (Hypothesis 2.2), while Chapter 8 presents a learned model for tutor dialogue 

move prediction (Hypothesis 2.3). Chapter 9 revisits the hypotheses and presents conclusions 

and directions for future work.  
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CHAPTER 2    

Background and Related Work 

This dissertation project falls at the intersection of two research fields: Intelligent Tutoring 

Systems and Natural Language Dialogue. Intelligent Tutoring Systems research is concerned 

with the design of intelligent systems to support learners, which often involves investigating 

fundamental learning processes that influence the way students interact with tutors or with 

systems. Section 2.1 presents background from this literature on the effectiveness of human 

tutorial dialogue, which holds important design implications for effective tutorial dialogue 

systems. Section 2.2 presents an overview of existing tutorial dialogue systems to highlight 

the novelty of this dissertation‘s data-driven approach to authoring a tutorial dialogue 

management model.  

The second field in which this dissertation is positioned is that of Natural Language 

Dialogue, which is concerned with, among other things, the implementation of natural 

language dialogue systems. Background from this literature involving data-driven statistical 

approaches to the two central tasks of user utterance interpretation and system dialogue move 

selection is presented in Sections 2.3 and 2.4, respectively. These sections highlight existing 

techniques that can be adapted and extended to meet the needs of tutorial dialogue in a 

complex task-oriented domain.  

2.1 Effectiveness of Human-Human Tutorial Dialogue 

The field of educational psychology gave rise to seminal work establishing that one-on-one 

tutoring is significantly more effective than classroom instruction (Bloom, 1984; Cohen et 

al., 1982). Spurred by those findings, a rich body of research has explored how students learn 
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through tutoring. Results regarding what makes tutoring so effective are diverse and far-

reaching; yet, the field does not fully understand which mechanisms are responsible for the 

full effectiveness of human tutoring. However, one important feature that has been 

emphasized in myriad studies is the interaction that takes place in human tutoring.  

2.1.1 Importance of interactivity 

Human-human tutorial dialogue is a highly interactive process. Studies have revealed that 

this interaction often takes a structured form that includes the tutor and student 

collaboratively constructing and refining the solution to a problem (Fox, 1993; Graesser et 

al., 1995). Controlled experiments have aimed to isolate this interactivity, providing 

empirical evidence that the effectiveness of tutoring is not due solely to the quality of the 

student‘s work nor to the quality of the tutor‘s moves, but rather, to the ―interaction effect‖ 

between the participants (Chi, M.T.H. et al., 2001). A further experiment has shown that 

tutorial dialogue is so powerful that it may even be effective when viewed vicariously by 

another student (Chi, M.T.H. et al., 2008). Highly interactive natural language dialogue 

facilitates important cognitive moves on the part of the student such as deep questions 

(Graesser & Person, 1994) and self-explanation (Chi, M.T.H. et al., 1994), and tutorial 

dialogue is particularly effective when the student‘s knowledge level is not well matched to 

existing learning materials (VanLehn et al., 2007). Collectively, this research indicates that 

the highly interactive nature of natural language tutoring is an important contributor to its 

effectiveness.  

 In addition to its high level of interactivity, human tutorial dialogue exhibits other 

features that have been hypothesized to contribute to its effectiveness; among these are 

motivational and affective considerations. Expert human tutors have been found to pay close 

attention to student motivation to improve the student‘s motivational or emotional state, for 

example by occasionally presenting an easy problem that does not challenge the student, in 
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order to increase the student‘s confidence (Lepper et al., 1993). Further work suggests that 

even inexperienced human tutors respond based partly on the perceived affective state of the 

student, either due to mostly-subconscious adherence to universal rules of politeness (Wang 

et al., 2005), or due to conscious strategy choice (Forbes-Riley & Litman, 2005; Porayska-

Pomsta & Pain, 2004). Another contributor to the effectiveness of tutoring is the 

individualized instruction made possible when a tutor considers the student‘s knowledge and 

tailors questions or feedback based on the student‘s knowledge gaps (Glass et al., 1999; Holt 

et al., 1994; Ohlsson, 1994; Zhou & Evens, 1999).  

2.1.2 Cognitive and motivational goals in tutoring 

Much of the research on motivation conducted in the ITS community is theoretically 

grounded in frameworks developed in the cognitive science community over the past several 

decades (Cameron & Pierce, 1994; Deci et al., 2001; Keller, 1983). These theories state that 

student motivation plays a key role in the learning process. Studies of expert tutors have 

found that the most effective tutors give equal attention to both the motivational and 

cognitive concerns of students (Lepper et al., 1993). This work refined previous models of 

motivation by postulating that motivation is comprised of confidence, challenge, control, and 

curiosity. It further identifies the two strategies of praise and reassurance as direct means of 

bolstering student confidence. These strategies are a form of ―verbal persuasion,‖ also 

identified by Bandura (1997), as one way of increasing self-efficacy, or people‘s beliefs about 

their capabilities to accomplish a particular task.  

An increasingly active area of investigation is the search for tutorial dialogue policies 

that address the complementary cognitive and affective concerns that shape the tutoring 

process. Porayska-Pomsta and Pain (2004) use dialogue analysis to classify cognitive and 
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affective feedback
6
 in terms of the degree to which each addresses a student‘s need for both 

autonomy and approval. Forbes-Riley and Litman (2005, 2009) employ bigram analysis at 

the dialogue act level to extract tutorial strategies for responding to student uncertainty. 

Corpus analysis techniques have also informed work on the automatic classification of 

tutorial dialogue acts (Marineau et al., 2000), though with respect to a much more limited set 

of dialogue acts than is considered in this paper. Corpora have also been used to compare the 

effectiveness of tutorial strategies in terms of learning outcomes (Ohlsson et al., 2007; Rosé 

et al., 2003; Rosé et al., 2001).  

Developing a clear understanding of the tradeoffs between cognitive and affective 

feedback is an important next step in tutorial dialogue research. Prior investigations of 

tutorial feedback have established a foundational understanding of cognitive feedback in 

terms of how and when it is delivered (Koedinger et al., 1997). Jackson and Graesser (2007) 

found the presence of cognitive feedback, as opposed to motivational ―progress‖ feedback, 

was responsible for higher learning gains in experimental versions of AutoTutor; on the other 

hand, the presence of cognitive feedback lowered students‘ motivational ratings. A consistent 

finding observed by Tan and Biswas (2006) was that students working with modified 

versions of the Betty‘s Brain tutoring system were able to learn better when given cognitive 

rather than affective feedback. Kelly and Weibelzahl (2006) investigated a motivational 

strategy in which a student was progressively shown another piece of a hidden image after 

each successful step through the learning task. Students in the motivational treatment group 

showed significantly larger increases in confidence levels compared with those in the control 

group, while there was no significant difference in learning gain. Finally, Wang et al. (2005) 

                                                 

6
 We use feedback to refer to ―information communicated to the learner that is intended to modify the learner‘s 

thinking or behavior for the purpose of improving learning‖ (Shute, 2007).  



www.manaraa.com

 

 

 

19 

found that tutors who gave polite feedback facilitated higher student self-efficacy gains, 

while learning was nearly unaffected.  

Beyond these broadly observable tradeoffs, investigators have also found that tutorial 

strategies may impact student subgroups (e.g., low ability vs. high ability students) in 

different ways. Rebolledo-Mendez et al. (2006) explored the effect of enhancing a tutoring 

system with motivational scaffolding. In M-Ecolab, initially unmotivated students were 

found to perform better with motivational adaptation and feedback, while students who were 

already motivated did not benefit from the motivational support. In a study of perceived 

politeness (a motivational aspect of tutorial utterances), Wang et al. (2005) found that 

students who were experienced with computers were less bothered by direct commands from 

a machine, while inexperienced students were more apt to appreciate politeness.  

2.1.3 Student motivation in computer science education 

The overwhelming majority of computer science education literature has focused on the 

purely cognitive aspect of learning (Machanick, 2007). This trend is not surprising given the 

alluring parallels between cognitive learning models and the basic functions of computing 

that are fundamental to the discipline. For instance, the theoretical framework known as 

constructivism has been embraced for its insights into CS learning processes (Ben-Ari, 1998), 

and direct analogies are sometimes made between the constructivist view, in which students 

build and ―debug‖ knowledge, and the activities involved in computer programming. 

Constructivism and other purely cognitive models of learning (e.g. Bloom, 1956) are 

valuable in understanding many phenomena surrounding the teaching and learning of 

computing. However, these models may not capture some important facets of the computer 

science learning process.  

As Machanick (2007) observes, there are phenomena in CS education that are not 

readily explained by current purely cognitive frameworks. He proposes that social 
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constructivism, a theoretical framework that is gaining acceptance in the broader education 

community, might offer explanations as to the observed effectiveness of some approaches 

such as peer assessment and apprenticeship-style teaching (Guzdial & Tew, 2006). The 

potential insights afforded by social constructivism stem from the theory‘s foundational 

tenets that learning has important social roles, and that communication is key to defining the 

knowledge of a learner. Evidence of the importance of communication in computer science 

learning environments has been noted by Barker and Garvin-Doxas (2004), who observe that 

the type of discourse that occurs in a computing classroom has far-reaching effects on 

learners. Further results on the importance of communication and the social role of learning 

have emerged from research in the contexts of pair programming (Slaten et al., 2005) and 

non-majors learning to program (Wiedenbeck, 2005).  

Tutoring is an instructional setting that has been proven effective in building 

knowledge and that is rich in communication. Long studied as an exemplary way to facilitate 

mastery of a subject, tutoring has been the setting for recent work in CS education research, 

for example, in investigating how students plan the solution to a programming problem (Lane 

& VanLehn, 2005). Because of the completeness of the instructional record created by 

controlled tutorial dialogue studies, it is possible to observe and make inferences on the fine 

details of learner activities.  

Motivation, which refers to a learner‘s impetus for engaging in learning activities, has 

received attention in the general education research community for at least two decades 

(Cameron & Pierce, 1994; Deci et al., 2001; Keller, 1983). Recently, motivating the learner 

has also been identified as a component of a complete conception of teaching computer 

science (Lister et al., 2007). Learner motivation has also been considered in several recent 

empirical studies in computer science education. For example, Soh et al. (2007) included 

attitudinal variables for student self-efficacy and motivation as part of a data collection effort 

to assess the effectiveness of a redesigned computer science curriculum. Additionally, pair 
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programming researchers recognize motivation as an important facet when measuring the 

impact of pair programming in educational settings (Williams et al., 2002). These studies 

show an increased awareness of the importance of motivation in the computer science 

learning process.  

In much of the existing computer science education research, motivational measures 

are taken at the beginning and end of an academic term to assess the impact of the 

instructional approach utilized during the term. Tracking changes at this granularity has 

proven a useful research approach. However, studying learner motivation at a finer 

granularity, for instance, over the course of a single programming assignment, can 

complement the coarser granularity approach generally undertaken to date. For example, 

Wolfe (2004) considers learner motivation at the level of a single programming assignment, 

observing that the rhetoric used in problem descriptions influences students‘ motivation. 

Wolfe suggests that programming assignments should emphasize real-world purpose and 

human factors. This kind of contribution is made possible by studying learner motivation at a 

finer granularity than over entire academic terms.  

2.2 Tutorial Dialogue Systems 

Motivated in part by the demonstrated effectiveness of one-on-one human tutoring compared 

to classroom instruction, the first intelligent tutoring systems (ITSs) emerged more than two 

decades ago (Wenger, 1987). Despite great strides, ITSs have fallen consistently short of the 

highest learning outcomes achieved by human tutors (VanLehn, 2008). One hypothesized 

explanation for this discrepancy is the systems‘ lack of natural language interaction with 

students. Observational studies of human tutoring have revealed a common pattern referred 

to as the tutoring frame (Graesser et al., 1995). The first three elements of this frame are 

present in classroom instruction and traditional ITSs. However, the last two elements, which 
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involve interacting in natural language to improve students‘ responses, are present only in 

tutorial dialogue (Figure 2).  

 

Figure 2. The 5-step tutoring frame 

In response to the hypothesis that natural language interaction constitutes a sort of ―missing 

link‖ for achieving the effectiveness of expert human tutors with intelligent systems, recent 

years have seen the rise of tutorial dialogue systems that interact with learners through 

natural language dialogue.    

2.2.1 Behavior of existing tutorial dialogue systems 

This section presents several tutorial dialogue systems and discusses the extent to which the 

behavior of each was informed by the study of tutoring corpora.  

 

CIRCSIM-Tutor. CIRCSIM-Tutor, which supports students in developing an understanding of 

the human circulatory system, was the result of a lengthy collaboration between researchers 

at Illinois Institute of Technology and Rush Medical College (Evens & Michael, 2006). The 

system presents a scenario and asks the student to predict the directionality of change in 

several parameters pertaining to the cardiovascular system. Students enter those predictions 

in a predictions table, and the tutor provides feedback on correctness by marking through 
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incorrect predictions. Subsequently the system engages the student in a tutorial dialogue to 

correct any misconceptions displayed by the students‘ response.  

 The tutoring strategies in CIRCSIM-Tutor are comprised of a combination of two 

tutorial moves: elicit and inform. Elicit involves making a request or asking a question. 

Inform involves presenting facts or explanations. Rather than providing immediate feedback 

on mistakes, CIRCSIM-Tutor waits for a student to complete a subset of the predictions 

required by a problem before providing feedback. This strategy allows the tutor to observe a 

pattern in the student‘s prediction to more accurately diagnose the potential student 

misconception.  

 Numerous human tutoring studies were conducted throughout the CIRCSIM project, 

most with two expert tutors who were university professors. Some studies were also 

conducted with unskilled tutors. The dialogues were conducted with a remote textual 

dialogue system and were annotated using Standardized General Markup Language. Some 

rules for the behavior of the system were extracted directly from these annotated transcripts 

using decision trees. Other tutorial strategies were extracted by manually clustering tutoring 

transcripts into similar groups and then noting the patterns that emerged. The project 

produced particularly influential findings regarding tutorial dialogue, especially with respect 

to the differences between expert and novice tutors (Evens & Michael, 2006).  

 

AutoTutor. Developed at the University of Memphis, AutoTutor is an intelligent tutoring 

system for qualitative physics and computer literacy (Graesser et al., 1999; Graesser et al., 

2004; Graesser et al., 2005). AutoTutor asks questions and assesses each student answer 

using a statistical approach that matches words in the student‘s response to words in expected 

correct or incorrect answers. AutoTutor then engages in remedial dialogue intended to 

address misconceptions or fill gaps that were indicated in the student‘s response. The 

system‘s utterances to the student are delivered in speech through a ―talking head‖ that uses 
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gestures and facial expressions as well as intonation. The tutor utterances are also recorded in 

a textual dialogue history in the interface. Student utterances are delivered textually.  

AutoTutor employs a dialogue strategy that involves providing brief feedback to 

assess the correctness of each student turn. Then the system moves on to another dialogue 

move by selecting from one of several possible actions: pumping, prompting, elaborating, 

correcting, and hinting. Pumping, such as ―Uh huh,‖ and ―What else?‖ is used near the 

beginning of each dialogue to encourage the student to continue constructing utterances. 

Prompting is a more content-rich version of pumping in which the tutor begins a sentence 

and then pauses with vocal tone or gesture inviting the student to type the phrase that 

completes this sentence; this scaffolded type of pumping is used primarily when material is 

believed to be unfamiliar to students. Elaborating involves the tutor stating information that 

the student has not supplied. Hints are used when the student is struggling with a question. 

Finally, AutoTutor employs the strategy of direct correction when the student makes an 

utterance that the system is confident contains shallow errors. This strategy is not used if the 

system has low confidence in its assessment or if the student‘s utterance is judged to display 

deep misconceptions that should be reasoned out rather than directly corrected.  

The behavior of AutoTutor was informed by extensive studies of unskilled human 

tutors; that is, the tutors were knowledgeable about the subject matter but had no training in 

formal tutoring methods. Over several years, researchers videotaped and transcribed 

approximately 100 hours of tutoring in domains such as undergraduate psychology and 

middle school algebra. AutoTutor‘s short feedback immediately after student turns was based 

on observing this behavior consistently with human tutors. AutoTutor‘s omission of an 

explicit student model was also based on the tutoring studies; researchers noticed that tutors 

did not appear to longitudinally model the students‘ knowledge in a sophisticated way, but 

rather, that tutors responded on a turn-by-turn basis to the knowledge (or lack thereof) 

displayed by the most recent student turn. The rich body of qualitative observations from 
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tutoring studies served as the primary source of design decisions for AutoTutor; in fact, the 

system designers often refer to it as a ―simulation of a human tutor.‖  However, as is the case 

with most systems presented in the remainder of this section, the corpus analysis did not 

involve constructing generative models of dialogue.  

 

The Geometry Explanation Tutor. The Geometry Explanation Tutor was developed at 

Carnegie Mellon University and extended with dialogue capabilities a previously existing 

cognitive tutor (Aleven et al., 2001; Aleven et al., 2004). The goal of this research was to 

support students‘ self-explanations of their actions (Chi, M.T.H. et al., 1994). As students 

take problem-solving steps in the problem-solving pane, they must fill in a box with an 

explanation for that problem-solving step. For incomplete or incorrect explanations, 

Geometry Explanation Tutor engages students in restricted dialogues designed to elicit 

explanations that are reasonably mathematically precise.  

Following the cognitive tutor architecture, the Geometry Explanation Tutor traces the 

students‘ solutions to a problem and provides hints and feedback depending on whether the 

student‘s actions and explanations match correct or ―buggy‖ rules. Unlike Autotutor which 

uses latent semantic analysis to process student input statistically, Geometry Explanation 

Tutor parses student input into knowledge structures corresponding to rules of the geometry 

domain. The tutorial strategy involves accepting student input that was correct and complete. 

For incomplete or incorrect explanations, the tutor randomly selects from the list of violated 

or missing rules and engages in remedial dialogue that involves asking the student a follow-

up question or giving advice on how to provide a better explanation. The student then enters 

a new explanation and the process repeats.  

During the design process of the Geometry Explanation Tutor, researchers collected a 

data set of written student explanations on a paper test to reveal some of the language 

processing challenges facing the system. These data revealed that the system would face 



www.manaraa.com

 

 

 

26 

error-ridden and very short student utterance input. Based on these data, researchers 

manually identified a hierarchy of 149 explanation categories and designed tutor utterance 

responses to the categories. The dialogue is shallow, involving only one tutor feedback turn 

indicating correctness or the presence of errors for each student explanation, and the tutor 

responses were not based directly on any human tutoring study.  

 

Why2-Atlas. Researchers at the University of Pittsburgh have developed Why2-Atlas, a 

tutorial dialogue system for qualitative physics (Jordan et al., 2006; VanLehn et al., 2002). In 

this system, students are asked a qualitative physics problem and must write an essay to 

answer the problem. After assessing the essay, the system engages the student in a dialogue 

intended to give feedback, address misconceptions, and discuss missing explanations in the 

student‘s original essay. After this dialogue, the student is asked to write a revised essay. The 

process continues until the student‘s essay is judged acceptable.  

 Why2-Atlas parses student essays into a set of propositions in first-order logic. 

Explicit misconceptions create a tutor goal of remedying that misconception, while expected 

propositions that were missing create corresponding tutor goals of eliciting the required 

content. The tutorial dialogue for addressing misconceptions and eliciting required content 

are conducted through Knowledge Construction Dialogues (KCDs), scripts that elicit lines of 

reasoning from students by asking questions.  

 Publications on the development of Why2-Atlas do not explicitly describe tutoring 

corpora that informed the system‘s design. Instead, requirements were gathered from physics 

tutors regarding the propositions required in each essay and the KCDs were implemented 

accordingly to address erroneous and missing concepts.  

 

CycleTalk. CycleTalk (Rosé, Aleven et al., 2004) is a dialogue system from Carnegie 

Mellon University that tutors college-level thermodynamics. The tutoring strategy involves 
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negotiating the problem-solving goals between tutor and student and allowing students to 

pursue these goals within an exploratory learning environment, CyclePad, in which students 

construct thermodynamic cycles and perform efficiency analyses. A goal of the project was 

to determine the desired behavior of the CycleTalk system by analyzing corpora of tutoring 

collected through a Wizard-of-Oz study with a human tutor. Qualitative analysis of the 

Wizard-of-Oz corpus yielded several general system desiderata (Rosé, Torrey et al., 2004). 

For example, it was observed that the system should be able to engage in activities including 

supporting students‘ functional analysis of their designs and weighing tradeoffs between 

alternate design choices.  

 A tutorial dialogue system was implemented using KCDs as in Why2-Atlas. These 

scripts were modeled after the human tutors from the Wizard-of-Oz study (Kumar et al., 

2006). The CycleTalk system was used not only to support individual learners but also to 

provide adaptive support for pairs of students, who were found to learn significantly more 

than students in the individual condition (Kumar et al., 2007).  

ITSPOKE. ITSPOKE, developed at the University of Pittsburgh, engages students in spoken 

dialogue for tutoring qualitative physics (Litman & Silliman, 2004).  It is a speech-enabled 

version of the Why2-Atlas text-based tutoring system.  In ITSPOKE, students first type 

responses to a qualitative physics problem, and ITSPOKE engages the students in spoken 

dialogue to refine the original answer. During this spoken dialogue the system takes actions 

such as providing feedback and prompting the student. When the dialogue has completed the 

system asks the student to edit the original written essay. Rounds of spoken tutoring continue 

until the system judges the student‘s essay to be acceptable.  

 The tutoring behavior of ITSPOKE was not originally based on empirical corpora, but 

rather, was provided by the Why2-Atlas tutoring system (Jordan et al., 2006; VanLehn et al., 

2002) described earlier in this section. However, in recent years extensive empirical 

investigations have been undertaken in the context of ITSPOKE to refine its tutorial 
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strategies. It has been found that detecting and responding to student uncertainty increases 

the effectiveness of ITSPOKE (Forbes-Riley & Litman, 2009). Machine learning approaches 

such as reinforcement learning have also been applied to corpora collected with human 

students using ITSPOKE. These studies suggest that micro-level tutorial decisions, such as 

whether to elicit a piece of information from a student or tell it directly, impact the 

effectiveness of tutoring (Chi, M. et al., 2010). Additional empirical results demonstrate how 

surface-level language features are associated with learning in both spoken and textual 

dialogue (e.g., Litman et al., 2006; Purandare & Litman, 2008). Ongoing work with the 

ITSPOKE system aims to explore ways in which the system can respond to student affect to 

improve student learning. 

 

ProPL. Developed at the University of Pittsburgh, ProPL is a tutorial dialogue system that 

supports novice computer science students as they write pseudocode for a solution to an 

introductory programming problem (Lane, 2004; Lane & VanLehn, 2005). Students make 

design notes and write pseudocode in the problem-solving pane and carry on textual dialogue 

with the system in the dialogue pane.  

 ProPL considers student solutions as consisting of goals and plans, and for each of 

these units that is recognized in the problem-solving pane, the system can employ a 

Knowledge Construction Dialogue (KCD), a script that elicits a line of reasoning from the 

student by asking a series of questions. If the system does not recognize a correct student 

answer through identification of keyword phrases, another KCD for remediation is entered; 

alternately, the system can make a bottom-out move, an utterance that provides the complete 

answer to the question. The tutorial moves that comprise KCDs include pumping, pointing to 

a relevant piece of information in the original problem statement, rephrasing a previously 

asked question, or eliciting an observation from the student about the condition of the current 

solution. Tutorial strategies encoded as KCDs also include hypotheticals, in which the tutor 
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asks the student to consider possible scenarios that might cause the solution to fail, eliciting 

abstractions, intended to request a more general answer to a previously asked question, and 

concrete examples designed to set up tutor elaboration of a topic.  

 The corpus study that informed ProPL‘s design consisted of 27 tutoring sessions 

across 2 problems conducted with a single tutor. These corpora were used to identify 

approaches and misconceptions of the students and to analyze the behavior of the tutor. The 

discourse was manually segmented at the location of each top-level ―what‖ question with 

which the tutor aimed to elicit the goal of the student; these segments were further 

decomposed based on the location of second-level ―how‖ questions designed to elicit plans. 

Facilitated by the fact that the system designer served as the tutor during corpus collection, 

manual qualitative analysis of the tutoring corpora led to the extraction of tutoring rules, 

which were then implemented as system behaviors.  

 

BeeDiff. Researchers at the University of Edinburgh have developed the BeeDiff tutor, a 

tutorial dialogue system that helps students solve symbolic differentiation problems 

(Callaway et al., 2007; Dzikovska et al., 2006). Its predecessors were BEETLE and 

BEETLE2 (Zinn et al., 2002), tutoring systems for the domain of basic electricity and 

electronics. BeeDiff displays a differentiation problem to the student, who is then able to 

work out a solution sequentially or input an answer immediately using an equation-editing 

pane; in addition, students can ask questions in the textual dialogue pane. Unlike AutoTutor, 

which uses latent semantic analysis, BeeDiff uses the TRIPS dialogue parser (Allen et al., 

2001), which extracts a domain-independent representation of the student‘s utterance. This 

representation is mapped onto the domain of differentiation and is then passed to a domain 

reasoner that assesses whether differentiation rules were correctly represented.  

When the student makes a mistake, BeeDiff employs an adaptive feedback strategy 

that depends on the student‘s performance. High performing students get vague feedback 
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such as ―Not quite,‖ while weaker students receive more specific help that includes a hint or, 

in the bottom-out case, the complete answer. Four levels of feedback are included, which 

range from a complete answer to a content-free hint as illustrated above.  

 BeeDiff‘s tutoring strategy is informed by a corpus of nineteen human-human tutorial 

dialogues. These tutoring sessions were carried out with tutors and students in separate rooms 

and communicating through textual dialogue; tutors viewed a synchronized version of the 

students‘ problem-solving workspace. These dialogues were used to focus the system design, 

such as how verbose the tutor should be and how prevalent was the use of inline equations in 

the textual utterances. The dialogues were also manually annotated for ―task segments‖ such 

as State Problem, Solve, and Tidy Up. Finally, the corpus was annotated with dialogue acts. 

Binary transition diagrams were used to indicate the presence (or absence) of adjacent pairs 

of dialogue acts. This analysis is comparable to the bigram analysis utilized in this 

dissertation as a baseline model for predicting tutor moves.  

 

iList. The iList tutorial dialogue system supports students in learning and applying basic data 

structures and algorithms content in computer science (Fossati et al., 2008). The system 

provides students with a problem and a data structure drawing, which the student may 

modify to help solve the problem. Students write a computer program to solve the data 

structure problem in the problem-solving pane. The system provides feedback within a 

feedback pane, with hints produced by constraint-based modeling which can identify student 

mistakes. 

 A major goal of the iList project was to define the system‘s behavior in an empirically 

grounded way. One corpus analysis revealed that the frequency of positive tutorial feedback 

was correlated with learning. This finding was used to modify the approach of iList, which 

originally provided mostly negative feedback because this feedback is more straightforward 

to implement with the chosen approach of constraint-based modeling (Fossati et al., 2009). 
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The constraint-based model was learned as a Markov chain based on the corpus of past 

student interactions (Fossati et al., 2010).  

 

All of the tutorial dialogue systems discussed in this section aim to engage students in 

rich natural language dialogue in support of a learning task. As a group, the systems have 

important limitations with respect to development time and effectiveness, as discussed 

below. The work in this dissertation aims to address those limitations with data-driven 

techniques.  

Today‘s tutorial dialogue systems generally required a large amount of development 

time: several hundred hours per hour of tutoring instruction (Aleven et al., 2009). As such, 

these systems provide tutoring for only a small number of topics. Due in part to this 

limitation, tutorial dialogue systems have never achieved the effect sizes observed with 

expert human tutors over the course of an academic term (Bloom, 1984). Instead, the effect 

sizes that have been observed with tutorial dialogue systems are often on par with ordinary 

(not expert) human tutors (Van Lehn et al., 2008).  

As discussed above, the extent to which corpora of human dialogue have historically 

been used to inform the behavior of each system is limited. The disconnect between effective 

human tutoring and the implemented behavior of tutorial dialogue systems may be partly 

responsible for the systems‘ less-than-optimal effectiveness. Recent research within the 

contexts of projects such as CycleTalk, ITSPOKE, and iList described above made a step 

toward data-driven tutorial dialogue system authoring by applying more extensive corpus-

based techniques than had previously been utilized within the Intelligent Tutoring Systems 

community. The work in this dissertation goes one step farther by inducing a model of 

tutorial strategies at the dialogue act level directly from a corpus. Furthermore, the current 

models leverage hidden dialogue state, a novel way to potentially capture tutorial dialogue 

modes automatically.  
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 New dialogue structure modeling techniques that facilitate data-driven authoring of 

tutorial dialogue system behavior may allow tutoring systems to more closely reflect the 

behavior of the most effective human tutors, increasing the systems‘ flexibility and 

robustness. Data-driven system development may also allow systems to cover more topics 

and therefore provide longitudinal, effective support to students. Sections 2.3 and 2.4 discuss 

these data-driven dialogue management techniques as they have been reported in the Natural 

Language Dialogue literature.  

2.3 User Utterance Interpretation in Dialogue Systems 

For natural language dialogue systems, including tutorial dialogue systems, a central 

challenge is interpreting users‘ input. This interpretation involves numerous levels of natural 

language understanding; for example, in spoken dialogue systems, automatic speech 

recognition is a challenging problem in itself. It focuses on simply identifying the words that 

were spoken. Beyond low-level word understanding, interpreting the user‘s input in dialogue 

involves identifying the dialogue act, or communicative purpose (e.g., asking a question, 

giving a command) of each utterance. Dialogue acts (Austin, 1962; Jurafsky & Martin, 2008) 

provide a valuable intermediate representation that can be used for dialogue management.  

A variety of dialogue act classification approaches have been investigated in the 

Natural Language Dialogue literature. These techniques have utilized both sequential 

approaches and vector-based classifiers. Sequential approaches (Stolcke et al., 2000) often 

treat dialogue as a discrete-time Markov chain, in which an observation depends on a single 

preceding observation (Jurafsky & Martin, 2008; Levin et al., 2000). It is known that the 

first-order Markov assumption does not strictly hold in natural language dialogue because of 

the potential dependence of each observation on the full dialogue history. However, because 

of the strong local dependence that has been observed in dialogue and because of the models‘ 

computational tractability, Markov models such as first-order observed Markov models (also 
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known as bigram models) and Markov decision processes have proven useful in a wide 

variety of dialogue applications (Bangalore et al., 2008; Forbes-Riley & Litman, 2005; 

Forbes-Riley et al., 2007; Levin et al., 2000; Young et al., 2009).
7
  HMMs are an example of 

these sequence-based models, and they model uncertainty within a doubly stochastic 

framework (Rabiner, 1989). An introduction to HMMs is provided in Section 6.1.  

Vector-based approaches to dialogue act classification, such as maximum entropy 

modeling, frequently take into account a variety of lexical and syntactic features of local 

utterance context.
8
  Many vector-based classifiers also leverage structural features such as 

dialogue act history and task/subtask history. Work by Bangalore et al. (2008) on learning 

the structure of human-human dialogue in a catalogue-ordering domain (also extended to the 

Maptask and Switchboard corpora) utilizes features including words, part of speech (POS) 

tags, supertags, and named entities, and structural features including dialogue acts and 

task/subtask labels when applicable. To perform incremental decoding of both dialogue acts 

and task/subtask structure, they take a greedy approach that does not require the search of 

complete dialogue sequences. The models reported in this dissertation also perform left-to-

right incremental interpretation and prediction with a greedy approach. For student dialogue 

act classification (Chapter 7) the feature vectors differ from the aforementioned work slightly 

with respect to lexical and syntactic features and notably in the addition of a set of hidden 

dialogue state features generated by a separately trained HMM.  

                                                 

7
 A dialogue act classification model is only one component within a fully functional dialogue system. While 

the dialogue act classification model may make a first-order Markov assumption, the dialogue system usually 

does not; it stores and makes use of many aspects of the full dialogue history.  

8
 Although vector-based approaches and sequence-based approaches make use of different techniques, both 

approaches make an n-th order (often first-order) Markov assumption regarding the process being modeled. 

Sequential Markov models make this assumption explicitly through conditional probability distributions. 

Vector-based models, by requiring feature vectors to be finite and of fixed size, make the same assumption 

implicitly.  
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Recent work by Sridhar et al. (2009) has explored the use of lexical, syntactic, and 

prosodic features for online dialogue act tagging; this work explores the notion that other 

structural features could be omitted altogether from incremental left-to-right decoding, 

resulting in computationally inexpensive and robust dialogue act classification. Although 

textual dialogue does not feature acoustic or prosodic cues, this dissertation reports on the 

use of lexical/syntactic features alone to perform dialogue act classification.  

Like Bangalore et al. (2008), the work reported in this dissertation treats task 

structure as an integral part of the dialogue model. Other work that has taken this approach 

includes the Amitiés project, in which a dialogue manager for a financial domain was derived 

entirely from a human-human corpus (Hardy et al., 2006). The TRIPS dialogue system also 

closely integrated task and dialogue models, for example, by utilizing the task model to 

facilitate indirect speech act interpretation (Allen, Ferguson et al., 2001). Work on the 

Maptask corpus has modeled task structure in the form of conversational games (Wright 

Hastie et al., 2002). Recent work in task-oriented domains has focused on learning task 

structure from corpora with supervised (Bangalore et al., 2008) and unsupervised 

(Chotimongkol, 2008) approaches. Emerging unsupervised methods, such as for detecting 

actions in multi-party discourse, also implicitly capture a task structure (Purver et al., 2006).  

The domain of tutoring introductory programming differs from all the task-oriented 

domains discussed above in that the dialogues center on the user‘s creation of a standalone 

artifact through a separate, synchronous stream of user-driven task actions. To illustrate, 

consider a catalogue-ordering task (Bangalore et al., 2008) in which one subtask is to obtain 

the customer‘s name. The fulfillment of this subtask occurs entirely through the dialogue, 

and the resulting artifact (a completed order) is produced by the system. In contrast, our task 

involves the user constructing a solution to a computer programming problem. The 

fulfillment of this task occurs partially in the dialogue through tutoring, and partially in a 

separate synchronous stream of user-driven task actions about which the system must reason. 
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To deal with this complexity, task actions and dialogue acts are integrated into a shared 

sequential representation. Additionally, task events and hidden dialogue state features are 

encoded in feature vectors for classification.  

2.4 Move Selection in Dialogue Systems 

Like the dialogue act classification work mentioned in Section 2.3, much of the data-driven 

research on selecting dialogue system dialogue moves relies on a Markov assumption (e.g., 

Levin et al., 2000; Chi, M. et al., 2010). Although this assumption is not strictly true in real 

world dialogue data because a long history of dialogue moves may influence the current 

observation, the Markov assumption has proven useful in numerous dialogue modeling 

applications due to its computational tractability and the relatively large amount of variation 

captured within a short window of dialogue history. When a first-order Markov model is 

used, each observation is assumed to depend only on the preceding observation; models that 

consider pairs of dialogue moves in this way are also called bigram models.  

Dialogue is often treated as a Markov decision process (MDP) or partially observable 

Markov decision process (POMDP) and then reinforcement learning (RL) is applied to derive 

optimal dialogue policies (Frampton & Lemon, 2009). Sparse data and large state spaces can 

pose serious obstacles to RL, and recent work aims to address these issues with novel 

approaches to user simulations (Ai et al., 2007), combining supervised and reinforcement 

learning techniques (Henderson et al., 2008), and constraining the state space with 

information-state update rules (Heeman, 2007). Another approach involves partitioning the 

state space to form equivalence classes when the data do not support further distinctions 

(Young et al., 2009).  

For tutorial dialogue, RL has been applied for feature selection with the goal of 

selecting a state space representation that best facilitates learning an optimal dialogue policy 

(Tetreault & Litman, 2008). RL has also been used for comparing specific tutorial dialogue 
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tactic choices, such as whether to tell a student the next step during tutoring, or whether to 

elicit the student‘s hypothesis (Chi, M. et al., 2008).  

While RL learns a dialogue policy through exploration, the work in this dissertation 

assumes that a flexible, good (though possibly not optimal) dialogue policy is realized in 

successful human-human dialogues. This policy can be extracted by learning a model that 

predicts human tutor actions within a corpus. Using human dialogues directly in this way has 

been the focus of work in other task-oriented domains. For example, in the Amitiés project, a 

dialogue manager for a financial domain was derived entirely from a human-human corpus 

(Hardy et al., 2006). Work by Bangalore et al. (2008) on learning the structure of human-

human dialogue in a catalogue-ordering domain (also extended to the Maptask and 

Switchboard corpora, which involve giving directions and conversational speech, 

respectively) utilizes a variety of lexical, syntactic, and task features to perform incremental 

decoding of the dialogues, including predicting system (customer service agent) dialogue 

moves. Like the parse-based models of Bangalore et al., the hierarchical hidden Markov 

models (HHMM) in this dissertation explicitly capture the hierarchical nesting of tasks and 

subtasks in the domain (Chapter 8). While their parse-based model constitutes a learned 

model of task structure, the HHMM in this work treats task/subtask structure as given. 

However, in contrast to Bangalore et al.‘s results, the hierarchical models described here 

outperformed flat models in terms of accuracy for predicting system dialogue acts.  

For tutorial dialogue, there is compelling evidence that human tutoring is a valuable 

model for extracting dialogue system behaviors. Over the course of its rich history, the 

CIRCSIM-TUTOR project utilized corpora of both expert and novice tutoring to inform the 

system‘s behavior, and machine learning rule extraction approaches were used for identifying 

tutor strategies (Evens & Michael, 2006). Using bigram models, Forbes-Riley et al. utilized a 

corpus of human tutoring to derive a model for responding to student uncertainty, and this 

model has subsequently been shown effective for improving tutoring outcomes (Forbes-Riley 
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et al., 2007; Forbes-Riley & Litman, 2009). This dissertation builds on the bigram work of 

Forbes-Riley et al. by moving beyond first-order Markov models to consider HMMs and 

HHMMs that capture hidden dialogue state to increase the predictive and classification 

power of the models.  

Other ongoing work that aims to develop tutorial dialogue system behavior in a data-

driven way is being conducted in the context of KSC-PAL, an intelligent tutoring system that 

supports peer collaboration (Kersey et al., 2009). Like the introductory computer science task 

involved in this dissertation, the computer science task that KSC-PAL supports involves the 

creation of a separate learning artifact, in their case drawings of computer science data 

structures. Events related to modifying this learning artifact are considered as unified 

components of the dialogue management model.  
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CHAPTER 3    

Human Tutoring Studies 

This project, which adopts a corpus-based methodology (Section 1.3), utilizes records of 

human-human tutorial dialogue as the basis for exploratory analysis and machine learning of 

predictive models. It was desirable for the corpora to consist of rich, naturalistic human 

dialogue that centered on a course-embedded student learning task within an introductory 

computer programming course. Three observational tutorial dialogue studies, two pilot 

studies and one primary study, were conducted with human tutors and introductory computer 

programming students. The studies yielded three textual dialogue corpora. All three of these 

studies were exploratory in nature; that is, they were not designed experiments, but were 

controlled studies conducted with the goal of producing a corpus of rich, natural language 

tutorial dialogue in the domain of introductory computer programming. Another important 

goal was for the tutoring to produce positive student learning gains as measured from pre-test 

to post-test, an outcome that was confirmed in learning gain analysis after the studies were 

complete (Sections 5.1-5.3). The study process and materials underwent iterative refinement. 

Software and instruments to measure motivation and learning were piloted in the first two 

studies, and then utilized in the final and largest study. Study I was conducted in the Fall 

semester of 2006, Study II was conducted in the Spring semester of 2007, and Study III, the 

main study, was conducted in the Spring semester of 2008. The remainder of this chapter 

describes the three tutoring studies.  
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3.1 Software 

Tutors and students collaborated remotely through textual dialogue from separate rooms. 

This remote collaboration was made possible by RIPPLE, a software tool designed to facilitate 

real time remote collaboration on programming projects (Boyer, Dwight et al., 2008).
9
  

RIPPLE features a synchronized problem-solving pane and a textual dialogue pane (Figure 3). 

All programming and dialogue events are logged to a database.  

 

Figure 3. Remote collaborative tutoring interface 

                                                 

9
 The RIPPLE system was implemented collaboratively with August Dwight and Taylor Fondren, whose 

undergraduate research projects were funded by the STARS Alliance (www.starsalliance.org) and the NC State 

University Department of Computer Science. Dright Ho, Lucas Layman, and Andy Sherriff provided valuable 

technical support during the development project.  
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The majority of RIPPLE‘s functionality for supporting synchronous views of a project 

is provided by Sangam (Ho et al., 2004), an Eclipse plug-in for distributed pair 

programming. Sangam relies on Eclipse
10

 for compilation and execution of students‘ source 

code. When the student performs a single action, an event is generated and transmitted to the 

tutors‘ workspace. The set of supported actions includes file system manipulation (e.g., 

creating and deleting files), editor operations (e.g., typing and highlighting) and program 

launch (execution). To ensure robust operation over the network, RIPPLE regularly performs 

integrity checks to assure the editor contents are identical for both users.  

3.2 Student Participants 

Student participants were volunteers who were enrolled in CSC 116, an introductory 

computer science course titled ―Introduction to Computing – Java‖ at North Carolina State 

University. Study I involved 35 participants, Study II involved 43 participants, and Study III 

involved 61 participants.
11

  Students were compensated for participation through a small 

amount of class credit that varied according to instructor preference. Data to establish the 

representativeness of the students in terms of class grades are not available; however, over 

half of the enrolled students each semester participated in the study. Participants included 

students whose declared majors were mechanical, electrical, and computer engineering, 

along with students majoring in computer science.  

3.3 Tutors 

Study I used six volunteer tutors: four graduate students, one female and three male, and two 

advanced undergraduate students, both male. Study II used fourteen volunteer tutors: twelve 

                                                 

10
 http://www.eclipse.org 

11
 Approved Human Subjects Research studies at North Carolina State University. Study I IRB #134-06-4; 

Studies II –III IRB #344-07-10  
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graduate students, two female and ten male, and two advanced undergraduates, both male. 

Study III involved the two most effective tutors from the prior studies, that is, the tutors who 

had the highest average student learning gains across Studies I and II. The tutors in Study III, 

one female graduate student and one male upper-division undergraduate student, were paid 

for their time. All tutors across the studies were between the ages of 19 and 30 and had a 

minimum of one semester of experience as a tutor or teaching assistant. Two tutors in Study 

II also had experience as classroom instructors. None of the tutors were involved as 

instructors or teaching assistants with the course from which the participants were drawn. 

Students‘ and tutors‘ identities were not revealed to each other before, during, or after the 

tutoring sessions.  

The tutor orientation consisted of a problem-solving session in which all the tutors 

met to work through alternate solutions to the programming problem. In addition, tutors were 

shown the student instruction video (described in Section 3.5) to familiarize them with the 

starting knowledge of the student regarding the software being used. The student instruction 

video also served as the tutor orientation to the software. Tutors were not instructed to use 

any specific instructional approaches or tutorial strategies because the intent was for each 

tutor to use his or her own strategies to accomplish the goal of helping students complete a 

programming exercise while ensuring that students developed an understanding of the 

general concepts used in the solution. In this way, the data represent a sampling of 

naturalistic human tutoring for introductory computer science.  

3.4 Problem-Solving Task 

The studies began in the eighth week of each semester, and the problem-solving task given to 

students was designed to be commensurate with their classroom and laboratory exposure at 

the time. Studies I and II used a programming exercise taken from the standard laboratory 

manual for the course (Appendix A). The programming exercise focused on using array data 
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structures along with loop constructs. Students were provided a partial solution that included 

an (initially empty) graphical display of the generated results. Students were required to 

complete three code modules to solve the programming problem. Based on tutor feedback 

from the previous two studies, which indicated the programming problem was unnecessarily 

confusing for students, Study III used a slightly simplified programming exercise (Appendix 

B). The latter was designed with social relevance in mind, a property thought to be implicitly 

motivational to students (Layman et al., 2007). As in the previous studies, the programming 

exercise focused on using array data structures and loop constructs to complete three 

modules. Because this programming exercise was handcrafted for the tutoring study, it was 

tested in the semester prior to Study III with a small group of volunteers who were enrolled 

in CSC 116 (the same course used for all three tutoring studies) or CSC 216 (the next course 

in the programming sequence). Anomalies in the problem description, code scaffolding, and 

the corresponding pre-test/post-test were corrected prior to deploying the exercise in Study 

III.  

3.5 Procedure and Instruments 

Upon arrival, students completed a pair of written instruments consisting of survey items on 

the student‘s motivation to study computer science, including the student‘s self-efficacy 

(Bandura, 2006). In Study I, these data were the first to be collected for each participant; in 

Studies II and III, participants were also asked to complete an electronic survey containing 

several demographic and psychometric instruments prior to arriving for the study. The 

demographic instrument collected students‘ ethnicity, expected graduation date, and major. 

Psychometric instruments included the Achievement Goals Questionnaire (Elliot & 

McGregor, 2001) and the Interpersonal Reactivity Index (Davis, 1983).  

 Student learning was assessed using pre- and post-tests. The pre-tests and post-tests 

were developed expressly for the purposes of the project. The tests were iteratively refined 
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between studies in an effort to make the questions more sensitive to differences in learning 

that occurred over the course of the tutoring sessions. The multiple choice pre- and post-tests 

for Studies I and II underwent no external evaluation (Appendix A); for Study III, the 

pre/post-test consisting of free response questions (Appendix B) underwent formal review by 

a panel of three independent subject matter experts with experience in teaching introductory 

computer science.
12

   

 Upon completing the written instruments (including pre-test), students were seated at 

a computer where they watched a short (3 minutes) instructional video describing RIPPLE, 

illustrating how to create and run programs, and instructing the students to greet their tutors 

through the textual dialogue interface immediately after the video ended. The students and 

tutors interacted remotely while the students planned and implemented the solution to the 

programming exercise. The choice to have students and tutors interact through remote typed 

dialogue was to ensure that students and tutors remained anonymous to each other and that 

all interactions were captured. The alternative formats would have been in-person tutoring or 

remote spoken tutoring. In-person tutoring permits a wider bandwidth of communication 

(e.g., facial expressions and gestures), but creating transcripts of video and capturing the 

nonverbal communication would not have been feasible given the time frame of the projects. 

Spoken remote tutoring would have restricted the use of nonverbal communication, but 

might have compromised the anonymity of tutors or students and would also have required 

extensive time in creating written transcripts for further analysis. The textual dialogue 

platform was designed to behave similarly to mainstream instant messaging clients likely to 

be familiar to the participants.  

                                                 

12
 The three experts were Dan Longo and Carol Miller (NC State University), and Dr. Chris Eason (Mercer 

University).  
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In Studies I and II, sessions were time-controlled at 50 and 55 minutes, respectively. 

In Study III, students were permitted to work until completion of the programming exercise 

or until one hour had elapsed. When the tutoring session reached its conclusion, a paper-

based post-survey and post-test with items analogous to the pre-survey and pre-test were 

administered.  

3.6 Tutorial Interaction 

Tutors and students were not aware of each other‘s identity. No individual characteristics 

including gender, ethnicity, age, or level of preparedness were disclosed to the tutor or the 

student. This restriction was communicated to all participants ahead of time. In the rare event 

that students inquired as to the tutor‘s identity, tutors were instructed to redirect the student 

with a response such as, ―Sorry, we‘re supposed to talk only about the programming 

exercise.‖  The need for this redirection arose infrequently in the studies, but was necessary 

to ensure that student and tutor assumptions would be controlled to the fullest extent 

possible.  

In Study I, there were no restrictions placed on the construction of dialogue messages; 

that is, while one user actively constructed a textual message, the other user was also 

permitted to construct and send messages. This design choice was made because of its 

consistency with the interface design of commercial instant messaging platforms familiar to 

the student population. In these instant messaging platforms, if one user completes a new 

message (possibly starting a new topic) while the other user is typing a response to the 

previous topic, the chronological record of dialogue can appear inconsistent with respect to 

the conversational structure. Human users deal with this phenomenon readily as the textual 

dialogue unfolds in real time; however, the situation gives rise to analysis challenges because 

researchers must ―untangle‖ the logs manually before analysis. To address this issue, the 

dialogue interface was modified for Studies II and III to enforce strict turn taking. When a 



www.manaraa.com

 

 

 

45 

user was actively constructing an utterance in the textual dialogue interface, the other user 

was not permitted to construct an utterance.
13

 However, the student was permitted to 

continue working in the problem-solving window regardless of the status of the textual 

dialogue interface.  

3.7 Structure of Tutoring Corpora 

As students and tutors interacted during the tutoring sessions, all dialogue and problem-

solving actions were recorded in a database. The complete record of tutoring therefore 

involves both textual dialogue and task events. Students generated textual dialogue utterances 

and task events; tutors generated only textual dialogue utterances. The structure of the 

interleaved dialogue and task events within the database is shown in Table 1. 

 In separate rounds of annotation, the dialogue and task events were manually tagged. 

The individual keystrokes of task events as shown in Table 1 were aggregated to form 

semantic problem-solving actions, and the dialogue utterances were labeled with dialogue 

acts. The annotation is described in detail in the next chapter.  

                                                 

13
 An alternative approach, which involved time-stamping a textual dialogue message with the start of typing 

rather than with the time of sending, was explored. However, this solution would still have allowed topics to be 

introduced in an asynchronous way, which would have posed significant challenges to automatically modeling 

the structure of the dialogues. In the free-response area of post-surveys, some students commented that they 

found the strict turn-taking behavior to be restrictive; therefore, future work should explore alternatives to this 

restriction.  



www.manaraa.com

 

 

 

46 

Table 1. Excerpt of corpus as structured in database  
2007-03-28 17:47:45 Tutor Dialogue So, basically, if table[correction][i] == 0, we need to 

draw a small bar 
2007-03-28 17:47:50 Tutor Dialogue and if it’s 1 we draw a full bar.  
2007-03-28 17:47:53 Tutor Dialogue make any sense? 
2007-03-28 17:48:15 Student Dialogue ah,yes, I see.  
2007-03-28 17:48:18 Student Task i 
2007-03-28 17:48:19 Student Task f 
2007-03-28 17:48:19 Student Task  
2007-03-28 17:48:20 Student Task  
2007-03-28 17:48:22 Student Task  
2007-03-28 17:48:23 Student Task {} 
2007-03-28 17:48:23 Student Dialogue Typing table is acceptable here? 
2007-03-28 17:48:52 Student Task t 
2007-03-28 17:48:54 Student Task a 
2007-03-28 17:48:54 Student Task b 
2007-03-28 17:48:55 Student Task l 
2007-03-28 17:48:55 Student Task e 
2007-03-28 17:48:55 Student Task [] 
2007-03-28 17:48:57 Tutor Dialogue That’s what I would do 
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CHAPTER 4    

Dialogue and Task Annotation 

The observational tutoring studies described in Chapter 3 produced three corpora of task-

oriented tutorial dialogue. The RIPPLE tutoring environment (Section 3.1) recorded the 

parallel textual dialogue and task event streams chronologically within a database, fully 

capturing the interplay between the dialogue utterances and the students‘ task actions. Each 

of the studies yielded a corpus with over five thousand dialogue moves and tens of thousands 

of student programming actions.
14

 To perform exploratory analysis on, and subsequently 

induce models over these corpora, they were annotated with dialogue acts and task/subtask 

structure. An excerpt from Corpus III that illustrates the interleaved nature of the dialogue 

and task, along with the type of annotation applied, is depicted in Figure 4. The remainder of 

this chapter describes the dialogue act and task annotation schemes and processes.
15

  

  

                                                 

14
 The task events were logged at the keystroke level because each keystroke, including deletions and 

corrections, were considered relevant problem-solving events that should be considered in manual annotation. 

Additionally, while a mechanism was available for dividing dialogue utterances into discrete events 

(specifically, the users chose to press the ―Send‖ button), no such mechanism was available or desirable for 

dividing student task actions automatically into semantic events.  

15
 The dialogue act annotation schemes for the second pilot study and the main study drew heavily on a scheme 

originally proposed by NC State graduate student Rob Phillips and refined in collaboration with NC State 

graduate students Michael Wallis and William Lahti and Meredith College undergraduate student Amy Ingram. 

The task annotation scheme was devised in collaboration with Rob Phillips and Amy Ingram.  
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Time Stamp Dialogue Stream [Dialogue Act Tag] Task Task Tag 
2008-04-11 18:23:45 Student:  so do i have to manipulate the array this time? 

[Q]   
2008-04-11 18:23:53 Tutor:  This time, we need to do two things [S]    
2008-04-11 18:24:02 Tutor:  first, we need to create a new array to hold the 

changed values [S]    
2008-04-11 18:24:28     i 

1-a-i 
BUGGY 

2008-04-11 18:24:28     n 
2008-04-11 18:24:28     t 
2008-04-11 18:24:28     \sp 
2008-04-11 18:24:35     \del  
2008-04-11 18:24:36     \sp  
2008-04-11 18:24:36     d 

1-a-i 
CORRECT 

2008-04-11 18:24:36     o 
2008-04-11 18:24:36     u 
2008-04-11 18:24:36     b 
2008-04-11 18:24:37     l 
2008-04-11 18:24:37     e 
2008-04-11 18:24:37     \sp 
2008-04-11 18:24:39     [] 
2008-04-11 18:24:40     \sp  
2008-04-11 18:24:42     n 

1-a-ii 
CORRECT 

2008-04-11 18:24:42     e 
2008-04-11 18:24:42     w 
2008-04-11 18:24:43     \sp 
2008-04-11 18:24:44     \del 
2008-04-11 18:24:45     T 
2008-04-11 18:24:46     \del 
2008-04-11 18:24:54     T 
2008-04-11 18:24:54     i 
2008-04-11 18:24:54     m 
2008-04-11 18:24:54     e 
2008-04-11 18:24:54     s 
2008-04-11 18:24:55     3 
2008-04-11 18:24:57     ; 
2008-04-11 18:25:11 Student:  good? [RF]    
2008-04-11 18:25:14 Tutor:  good so far, yes [PF]    
2008-04-11 18:25:29 Student:  so now i have to change parts of the times 

array right? [Q]    
2008-04-11 18:25:34 Tutor:  not quite [LF]    
2008-04-11 18:25:57 Tutor:  So, when you create a new object, like a String 

for example, you'd say something like  String s 
= new String() [S]    

Figure 4. Excerpt from Corpus III illustrating dialogue and task annotations 
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4.1 Dialogue Act Annotation 

Dialogue act annotation involves marking each dialogue move with a tag summarizing the 

utterance‘s purpose (e.g., greeting, questioning, answering, disagreeing). For example, in 

tutorial dialogue, common dialogue acts include asking questions (e.g., ―What kind of 

variable should I use?‖), making assessments of knowledge (e.g., ―I don‘t know how to 

declare an array‖), and acknowledging a previous statement (e.g., ―Okay‖). Because there is 

no gold standard for annotating tutorial dialogue, the set of dialogue act tags was adapted 

from annotation schemes from the dialogue analysis literature to capture the salient 

characteristics of the corpora. Some dialogue acts were taken directly from a set applied in 

the domain of qualitative physics (Forbes-Riley et al., 2005), while other tags were inspired 

by a more expansive set of tags created for conversational telephone speech (Stolcke et al., 

2000) and another comprehensive, hierarchical scheme for task-oriented dialogue (Core & 

Allen, 1997).  

4.1.1 Establishing inter-annotator agreement for tagging schemes 

Inter-annotator agreement studies are used to establish whether an annotation scheme can be 

consistently applied by more than one human. These agreement studies usually involve a 

primary annotator tagging an entire corpus, while a subset of the corpus is annotated 

independently by a second tagger (Carletta, 1996; Litman & Forbes-Riley, 2006; Ohlsson et 

al., 2007). The agreement between the two taggers is often measured using a Kappa 

agreement statistic, which adjusts the absolute percentage agreement to account for the 

agreement that would be expected by chance (Cohen, 1960). The Kappa statistic ranges from 

-1 (no agreement) to 1 (perfect agreement). Negative values indicate that the annotator 

agreement was worse than would be expected if both taggers guessed randomly, and positive 

values indicate that the agreement was better than would be expected with random guessing. 
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A widely used framework for interpreting the Kappa statistic is depicted in Figure 5 (Landis 

& Koch, 1977).  

 

Figure 5. Kappa statistic interpretation scheme 

For each of the annotation schemes reported in this dissertation, the inter-annotator 

agreement study proceeded as follows. First, the tagging scheme and its accompanying 

tagging protocol were developed. Two annotators then applied the scheme collaboratively to 

a small subset of the data during a first training round until they believed that they would be 

able to apply the scheme consistently during independent tagging.
16

 If necessary, this training 

round included refinement of the tagging scheme. The two annotators then applied the 

scheme independently of each other to another small subset of the corpus during a testing 

round, and their agreement was assessed by calculating the Kappa statistic. If the agreement 

was not acceptably high (>0.70 for dialogue act tagging) then a second training and testing 

round was conducted. Once a training and testing round produced an acceptably high 

agreement statistic, the primary tagger proceeded with annotating the entire remainder of the 

corpus and the secondary tagger annotated a previously unseen subset of 10%-30% of the 

corpus. The final Kappa statistic for agreement was calculated using the subset of the corpus 

that was tagged independently (not as part of a training and testing round) by both annotators.  

                                                 

16
 The author of this dissertation served as the primary dialogue act annotator for the two pilot corpora, and as 

the secondary annotator for the main corpus. August Dwight and Rob Phillips performed secondary dialogue act 

annotation for the pilot corpora, and Amy Ingram performed the primary dialogue act annotation for the main 

corpus.  
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4.1.2 Corpus I dialogue act annotation 

The first pilot study produced the smallest of the three corpora, consisting of 5,034 dialogue 

acts: 3,075 tutor turns and 1,959 student turns. The dialogue act tagging scheme drew from 

two tutoring tag-sets (Forbes-Riley et al., 2005; Marineau et al., 2000) and one annotation 

scheme for conversational speech (Stolcke et al., 2000). The set of dialogue act tags is 

depicted in Table 2. The entire corpus was manually annotated by the author of this 

dissertation, with a second researcher (a Computer Science undergraduate student) 

annotating a subset of 19%, or 969 utterances selected with random stratified sampling by 

tutor of complete tutoring sessions.
17

 This agreement study found that the inter-annotator 

agreement was substantial, at κ=0.75.  

4.1.3 Corpus II dialogue act annotation 

The second pilot study, conducted in Spring 2007, produced Corpus II consisting of 4,864 

dialogue moves: 1,528 student moves and 3,336 tutor moves. The set of dialogue act tags 

was augmented for the second pilot study with division into two channels: a cognitive 

channel and an affective/motivational channel. The cognitive dialogue acts refined the set 

used for Corpus I by drawing heavily on a comprehensive hierarchical tagging scheme for 

task-oriented dialogue in a travel domain (Core & Allen, 1997). The affective/motivational 

dialogue acts drew from extensive studies of the motivational tactics of human tutors (Lepper 

et al., 1993) and from a tagging scheme for student certainty (Forbes-Riley et al., 2007). The 

tagging scheme applied to Corpus II is depicted in Table 3.  

                                                 

17
 While the two annotators had different levels of expertise with respect to dialogue analysis, this discrepancy 

does not hinder the findings regarding the ability of two individuals to reliably apply the tagging scheme. In 

fact, greater individual differences between annotators strengthen the favorable agreement statistics by 

suggesting that a particular level of prior expertise is not needed to apply the tagging scheme.  
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 All dialogue moves in the corpus were annotated by a single researcher, a Computer 

Science graduate student, with a second researcher, the author of this dissertation, annotating 

29%, or 1,418 moves, which were selected with random stratified sampling by tutor of 

complete tutoring sessions. The resulting agreement statistics were κ=0.76 for the cognitive 

channel and κ=0.64 for the motivational/affective channel, both indicating substantial inter-

annotator agreement. 
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Table 2. Corpus I dialogue act annotation scheme 

 Act Description Examples 

St
ud

en
t o

r T
ut

or
 

TASK QUESTION (TQ) Questions about goals, 
plans, and their ordering.  

Where should we start? 
Should we use an array? 

CONCEPT QUESTION 
(CQ) 

Questions about domain 
elements, concepts, or facts 
that are not problem-specific.  

How do I declare an 
array? 
I don’t know how to write 
a loop.  

ANSWER (A) Answers to task or concept 
questions.  

Yes/No.  
We need to give it an 
index.  

ACKNOWLEDGEMENT 
(ACK) 

Positive acknowledgement 
of a previous statement.  

Okay.  
Alright.  

EXTRA-DOMAIN (EX) Not related to the computer 
science discussion.  

Sorry.  
Nice working with you.  

St
ud

en
t 

REQUEST FEEDBACK 
(RF) 

Request for evaluative 
feedback on completed or 
proposed problem-solving 
steps.  

Should I do array[0]=1? 
Does that look good? 

SIGNAL NON-
UNDERSTANDING (SNU) 

An indication that a previous 
statement is unclear.  

Kind of makes sense.  
Not really.  

STATEMENT (S) Assertion of fact.  I am going to use a for 
loop.  
We need to initialize that 
variable.  

Tu
to

r 

(UN)PROMPTED POSITIVE 
FEEDBACK 

Positive feedback.  Good job.  
Looks great.  

(UN)PROMPTED 
LUKEWARM FEEDBACK 

Partly positive, partly 
negative feedback.  

You’re close.  
The first part is right, 
but… 

HINT/ADVICE (HA) Problem solving or 
conceptual hint or advice not 
in answer to a direct 
question.  

Each digit is represented 
by 5 bars.  
Let’s move on.  

REQUEST TO CONFIRM 
UNDERSTANDING (RCU) 

Request to confirm the 
student’s understanding.  

Does that make sense? 
Are you with me? 
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Table 3. Corpus II dialogue act annotation scheme 

 Act Description Examples 

C
og

ni
tiv

e 
C

ha
nn

el
 

QUESTION (Q) Questions about goals, plans, 
and domain concepts.  

Where should we start? 
How do I declare an array? 

EVALUATING QUESTION 
(EQ) 

Questions that explicitly inquire 
about the student knowledge 
state or correctness of problem-
solving actions.  

Do you know how to declare 
an array? 
Is that right? 

STATEMENT (S) Declarative assertion.  You need a closing bracket 
there.  
I am looking for where this 
method is declared.  

GROUNDING (G) Acknowledgement, thanks, other 
conversational grounding.  

Okay.  
Alright.  

EXTRA-DOMAIN (EX) Not related to the computer 
science discussion.  

Sorry.  
Nice working with you.  

POSITIVE FEEDBACK (PF) Unmitigated positive feedback 
regarding problem-solving action 
or student knowledge state.  

Yes, I know how to declare 
an array.  
That is right.  

LUKEWARM FEEDBACK 
(LF) 

Partly positive, partly negative 
feedback.  

Sort of.  
Almost.  

NEGATIVE FEEDBACK (NF) Totally negative feedback.  No.  
Actually, that won’t work.  

M
ot

iv
at

io
na

l/A
ffe

ct
iv

e 
C

ha
nn

el
 

CONFUSION (C) Indicates disorientation beyond 
that indicated by negative 
feedback.  

I have no idea what to do.  
I’m lost.  

FRUSTRATION (F) Explicit expression of frustration.  Grr! 
This is so frustrating.  

EXCITEMENT (E) Explicit expression of 
excitement.  

Sweet! 
Cool! 

PRAISE (P) Emphasizes a student’s 
success. Goes beyond positive 
feedback.  

Great job on that part! 
That’s perfect.  

REASSURANCE (R) Intended to minimize a student’s 
failure.  

That part was hard.  
Don’t worry about it.  

OTHER EMOTION (O) Affective or motivational 
utterance for which there is no 
pre-defined tag.  

Haha.  
I’m sorry.  
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4.1.4 Corpus III (main corpus) dialogue act annotation 

For Study III, lessons learned in Studies I and II were used to create a modified dialogue act 

tagging scheme designed to capture the aspects of the dialogue that were deemed most useful 

from a dialogue system implementation perspective. For example, the low occurrence of 

affective/motivational dialogue moves in Corpus II and the even lower occurrence of these 

moves in Corpus III (based on preliminary manual analysis for the presence of 

affective/motivational content) led to a cognitive-only dialogue act tagging scheme for this 

corpus. This tagging scheme is depicted in Table 4. Inter-rater agreement for this tagging 

scheme on 10% of the corpus was ĸ=0.80, indicating substantial agreement between the 

primary annotator, an undergraduate Computer Science student, and the secondary annotator, 

the author of this dissertation.  

4.2 Task Annotation 

The previous section focused on textual dialogue utterances sent between tutors and students. 

In addition to dialogue, the tutoring sessions also involved students writing computer 

programming code in Java to solve an introductory programming exercise, the task. The 

students‘ programming keystrokes, including typing or deleting elements of their computer 

program along with other actions as described in Section 3.1, comprise the task action event 

stream. In the main corpus, the task event stream included 97,509 keystroke-level student 

task events. The keystroke-level task events were manually aggregated into 3,793 

task/subtask event clusters that were annotated for subtask structure and then annotated for 

correctness as described below.  

The task annotation scheme is hierarchical and reflects the nested nature of the 

subtasks with the programming task (this programming exercise is provided in Appendix B). 

A subset of the task annotation scheme is depicted in Figure 6. Each group of task events that 

occurred between dialogue utterances was tagged for all its constituent subtask labels.  
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Table 4. Corpus III dialogue act annotation scheme 

Dialogue Act Description 

Student 
Relative 

Freq.  

Tutor 
Relative 

Freq.  
ASSESSING 
QUESTION (AQ) 

Request for feedback on task or conceptual 
utterance.  . 204 . 107 

EXTRA-DOMAIN (EX) Asides not relevant to the tutoring task.  . 076 . 040 

GROUNDING (G) Acknowledgement/thanks.  . 261 . 057 

LUKEWARM 
ELABORATED 
FEEDBACK (LCF) 

Lukewarm assessment with explanation.  

. 011 . 031 

LUKEWARM FEEDBACK 
(LF) 

Lukewarm assessment of task action or 
conceptual utterance.  . 019 . 026 

NEGATIVE 
ELABORATED 
FEEDBACK (NEF) 

Negative assessment with explanation.  

. 014 . 097 

NEGATIVE 
FEEDBACK (NF) 

Negative assessment of task action or 
conceptual utterance.  . 045 . 017 

POSITIVE 
ELABORATED 
FEEDBACK (PEF) 

Positive assessment with explanation.  

. 024 . 028 

POSITIVE 
FEEDBACK (PF) 

Positive assessment of task action or 
conceptual utterance.  . 093 . 158 

QUESTION (Q) Task or conceptual question.  . 094 . 027 

STATEMENT (S) Task or conceptual assertion.  . 160 . 411 
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Figure 6. Portion of hierarchical task annotation scheme 

The human annotator aggregated the students‘ raw task (programming) keystrokes 

and tagged the task/subtask hierarchy for each cluster. A second annotator tagged 20% of the 

corpus in a reliability study for which one-to-one subtask identification was not enforced 

(giving the annotators maximum flexibility to apply the tags). All unmatched subtask tags 

were treated as disagreements. The resulting unweighted Kappa statistic at the leaves was 

ĸ=0.58, indicating moderate agreement. However, we also observe that the sequential nature 

of the subtasks within the larger task produces an ordinal relationship between subtasks. For 

example, in Figure 6, the ―distance‖ between subtasks 1-a and 1-b can be thought of as ―less 
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than‖ the distance between subtasks 1-a vs. 3-d because those subtasks are farther from each 

other within the larger task. The weighted Kappa statistic (Artstein & Poesio, 2008) takes 

into account such an ordinal relationship and its implicit distance function. The weighted 

Kappa is ĸweighted=0.86, which indicates acceptable inter-rater reliability on the task/subtask 

annotation.  

Along with its tag for hierarchical subtask structure, each task event was also judged 

for correctness according to the requirements of the task. Correctness categories are shown in 

Table 5. The agreement statistic for correctness was calculated for task events on which the 

two annotators agreed on the subtask tag. The resulting statistic for correctness was ĸ=0.80, 

indicating substantial inter-annotator agreement.  

Table 5. Task correctness annotation scheme 
Task 

Correctness 
Category Description 

CORRECT Fully satisfying the requirements of the learning task. Does not require 
tutorial remediation.  

BUGGY Violating the requirements of the learning task. Usually requires tutorial 
remediation.  

INCOMPLETE Not violating, but not yet fully satisfying, the requirements of the learning 
task. May require tutorial remediation.  

DISPREFERRED Technically satisfying the requirements of the learning task, but not 
adhering to its pedagogical intentions. Tutors often choose to 
remediate.  

 

4.3 Other Types of Annotation 

The dialogue act and task annotation described in Sections 4.1 and 4.2 serve as the basis for 

the modeling contributions of this dissertation, which involve machine-learned models for 

both user dialogue act classification and tutorial move selection. However, during the 
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exploratory phases of the work, other annotations were applied either automatically or 

manually. No inter-annotator agreement studies were conducted for these annotation projects.  

4.3.1 Automatic heuristic annotation for student problem-solving correctness 

An automatic heuristic annotation for correctness was applied to Corpus II and was used in 

the exploratory analysis reported in Section 5.2. In this annotation, events were automatically 

tagged using the following rule:   

i) if a problem-solving action was a programming keystroke that survived until the 

end of the session, then this event was tagged promising to indicate it was 

probably correct;  

ii) if a problem-solving act was a programming keystroke that did not survive until 

the end of the session, then the problem-solving act was tagged questionable.
18

 

This heuristic is based on the process used in this work, i.e., in this tutoring context, students 

solved the problem in a linear fashion and tutors did not allow students to proceed past a step 

that had incorrect code in place. Finally, periods of consecutive scrolling were also marked 

questionable because in a problem where the entire solution fits on one printed page, 

scrolling was usually conducted in irrelevant source files included to support graphical output 

of the programming exercise (See Appendix A). Because the student‘s solution did not 

interface directly with these source files, scrolling through them was generally not a 

productive problem-solving step. This heuristic may not hold in all cases of student scrolling 

through peripheral files, and as such, is one limitation of the preliminary automatic task 

annotation. This limitation does not extend to the manual annotation employed for the main 

corpus.  

                                                 

18
 The automatic problem-solving action tagger was implemented collaboratively with Michael Wallis.  
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4.3.2 Annotation for initiative 

While dialogue act annotation involves marking a corpus at the level of dialogue turns, 

another useful type of annotation entails marking the higher-level structure of the dialogue 

with regard to which collaborator holds the initiative at a given point, according to the 

following criteria. We distinguish STUDENT-INITIATIVE  and TUTOR-INITIATIVE modes.  

In STUDENT-INITIATIVE mode the student maintains control and direction over the 

problem-solving effort. STUDENT-INITIATIVE mode is characterized by the following 

activities:   

•   The student states his/her plan and (optionally) asks the tutor for feedback, 

•  The student reads the problem description or constructs a portion of the actual 

solution independently, as indicated by no dialogue exchanged while the student is 

conducting these problem-solving activities,
19

 

•  The student asks content-based questions (e.g., ―I should start this index at 0, 

right?‖) as opposed to content-free questions (e.g., ―What do I do now?‖).  

 

In TUTOR-INITIATIVE mode, the tutor directs the problem-solving effort. Because the 

user interface does not allow tutors to edit the students‘ solutions, TUTOR-INITIATIVE mode 

does not involve the tutor actively constructing the problem solution. However, the tutor 

often used the textual dialogue interface to actively guide and direct the student to take very 

specific problem-solving actions. TUTOR-INITIATIVE mode includes the following activities:   

•  The tutor offers unsolicited advice or correction 

•  The tutor lectures on a concept 

                                                 

19
 Researchers were only present periodically during the studies, and therefore, during times that the student 

appears to be reading the problem description, he or she may actually be engaged in off-task or other behavior. 

This limitation should be addressed in future work by use of technology such as eye-trackers to more clearly 

identify the focus of students‘ attention.  
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•  The tutor explicitly suggests the next step in problem solving, or  

•  The tutor poses questions to the student.  

 

To illustrate the initiative modes, two excerpts are presented (Figure 7). The first excerpt 

illustrates STUDENT-INITIATIVE mode. In this excerpt, the student asks a content-based 

question indicating he/she knows the problem lies in a return statement. The tutor provides 

an answer that the student acknowledges. Finally, the student spends five uninterrupted 

minutes coding part of the problem solution. Lengthy periods of independent student work 

are common in STUDENT-INITIATIVE mode. The second excerpt illustrates TUTOR-INITIATIVE 

mode. In this excerpt, the tutor gives unsolicited advice and asks questions of the student. 

The student spends a brief time repairing the problem solution, and the tutor once more 

provides unsolicited feedback. As illustrated in this excerpt, brief periods of student work 

interspersed with frequent dialogue are common in TUTOR-INITIATIVE mode.  

Tags at the level of initiative can span many individual dialogue acts. Since the 

corpora consist of dialogue turns interleaved chronologically with student problem-solving 

actions, tags for initiative can also span contiguous sections of textual dialogue and student 

problem-solving. The two tags of STUDENT-INITIATIVE and TUTOR-INITIATIVE were manually 

applied in an exploratory study that did not feature inter-rater reliability tagging.  
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STUDENT-INITIATIVE Mode 
Student: What am I not typing right in the return statement? 
Tutor: You only need to return the identifier.  
Tutor: In other words, you just need to return newTimes.  
Student: Ok.  

[Student works independently for 5 minutes. ] 
 
TUTOR-INITIATIVE Mode 
Tutor: Hmm, that doesn’t look quite right.  
Tutor: Do you see the projected array output? 
Student: Yes.  
Tutor: It looks like it’s only getting the first value.  
Tutor: So your loop must be stopping before it’s done with its work.  
Tutor: Do you see what might be causing that? 
 

[Tutor-led conversation continues. ] 
 
Tutor: But it’s coming out 1. 0 instead of 4. 3.  
Tutor: Anything else look wrong on the graph, compared with the instructions? 
Student: The second bar is not right.  
Tutor: I think fixing the length might be the only thing you need to change.  

 
[Student works for 10 seconds. ] 

 
Tutor: Much better.  
Student: Yeah!! 

Figure 7. Excerpt from STUDENT-INITIATIVE and TUTOR-INITIATIVE modes 
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CHAPTER 5    

Exploratory Analysis of Tutorial Dialogue Corpora 

To work toward the goal of creating a highly effective, data-driven tutorial dialogue system, 

it was essential to explore how tutorial phenomena from the literature manifested within the 

domain of introductory computer programming. This chapter describes the exploratory 

analyses that were conducted prior to utilizing the corpora to machine learn statistical 

dialogue act classifiers and predictive models of tutor moves. In addition to informing 

subsequent modeling approaches, these exploratory analyses hold intrinsic value for 

illuminating pedagogical phenomena in task-oriented tutoring with respect to cognitive, 

motivational, and affective outcomes, and for furthering the state of knowledge regarding 

how students come to understand computing.  

5.1 Tutorial Adaptation to Student Characteristics 

Results from Corpus I, collected during the first pilot study, suggest that tutors adapt in 

specific ways to student characteristics (Boyer, Vouk et al., 2007). The student 

characteristics considered in this section include 1) incoming knowledge level as measured 

by pre-test, 2) self-efficacy as measured on the pre-survey (Appendix A), and 3) gender. 

Although no student characteristics were explicitly revealed to the tutors, the tutorial 

dialogues with low pre-test students differ from those of students with high pre-test, and 

significant differences in dialogue profile also emerge between low and high self-efficacy 

students and between students of different genders.  

Overall, the tutoring sessions in Study I were effective: on average, students scored 

13 percentage points higher on the post-test than the pre-test. This average learning gain is 
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statistically significant (p<0.0001 using a t-test with 34 DF, SD=0.12) and the effect size is 

1.08.
20

 The self-efficacy measure was obtained from a pre-survey item in which students 

were asked to rate how certain they are, on a scale of 0-100, that they could complete a 

simple programming exercise on their own. The items used to measure computer science 

self-efficacy are based on Bandura‘s widely utilized domain-specific self-efficacy scale 

(Bandura, 1997).  

 For each student dialogue session, the relative frequency of each dialogue act was 

computed as the ratio of the number of occurrences of that dialogue act to the total number of 

dialogue acts in the session. The relative frequency of each dialogue act was then computed 

for the following three partitions of students: high pre-test and low pre-test students, high 

self-efficacy and low self-efficacy students, and female and male students. Figure 8 presents 

two sample annotated dialogue excerpts from the corpus.  

In Dialogue Excerpt A, the tutor interacts with a low pre-test student, Student A, 

whose pre-test score was well below the median. The structure of Dialogue A illustrates 

many features commonly seen with low pre-test students. Student A responds to the tutor‘s 

first question with an unsure answer. After receiving a hint from the tutor, Student A types a 

proposed problem-solving step into the dialogue interface before implementing it in the 

problem-solving environment. This pattern of receiving a hint and then requesting feedback 

repeats. It appears that Student A, who also happens to be in the low self-efficacy group, in 

addition to being in the low pre-test group, seeks to establish confirmation of his proposed 

plan before proceeding to implementation.  

In contrast to Dialogue A, Dialogue B illustrates some common characteristics of 

dialogues with high pre-test students. Student B asks a specific question and after receiving 

                                                 

20
 This effect size is computed as difference in pre-test mean and post-test mean divided by standard deviation 

of pre-test.  
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tutorial advice begins problem-solving work. Student B does not type the proposed problem-

solving step into the dialogue interface to obtain feedback from the tutor; rather, the student 

proceeds directly to implementation.  

Dialogue Excerpt A  Dialogue Excerpt B  
Tutor: Do you know how to do that? [TQ] 
Student: Not really. [A] 
Tutor: Well we first need a new String that will 
hold zipCode’s string value. [HA] 
Student: So String z = zipCode? [RF] 
Tutor: Close. [PLF] 
Tutor: Then you can set that string equal to 
“”+zipcode. [HA] 
Student: Ok so String z = “”+zipCode [RF] 
Tutor: Yeah. [PPF] 
Student: Then what? [TQ] 
Tutor: Ok, so now we need somewhere to 
keep the individual digits. [A]  

Student: So I need an if for each digit? [TQ] 
Tutor: One if should suffice, since it will be 
called in each iteration. [A] 
Tutor: You just need to know which element to 
reference. [A] 
Tutor: This would be done in the inner loop. [HA] 
Student: Ok. [ACK] 
(Student works for 2.5 minutes. ) 
Tutor: You’ve got the right idea. [UPF] 
Student: Yeah, I had programmer’s block. [EX] 
(Student works for 3 minutes. ) 
Tutor: Perfect. [UPF] 

Figure 8. Excerpts from Corpus I illustrating low vs. high pre-test student dialogue 

To determine whether inter-group differences in means were significant, t-tests were 

performed. The relative frequencies and statistically significant differences (bold) are given 

in Figure 9. It should be noted that the partitions are not independent; for example, high pre-

test students were more often in the high self-efficacy group. However, sample sizes do not 

support multi-level analysis, so the following analysis examines each learner characteristic 

individually.  
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Dialogue Act

Student

Task Question (TQ)

Student

Concept Question (CQ)

Student Answer (A)

Student

Acknowledgement (ACK)

Student

Extra Domain (EX)

Request Feedback (RF)

Statement of Non-

Understanding (SNU)

Statement (S)

Unprompted Positive 

Feedback (UPF)

Pre-test Performance Self-efficacy Level Gender

Relative Frequencies

Tutor

Task Question (TQ)

nhigh=17, nlow=18 nhigh=19, nlow=16 nfemale=7, nmale=28

High 11.2%

Low 12.1%

High 11.1%

Low 12.3%

Female 12.8%

Male 11.4%

High   6.7%

Low   6.4%

High   6.2%

Low   6.9%

Female   6.5%

Male   6.5%

High   0.7%

Low   0.9%

High   0.9%

Low   0.6%

Female   0.6%

Male   0.8%

Tutor

Concept Question (CQ)

High   1.1%

Low   1.0%

High   0.8%

Low   1.3%

Female   1.1%

Male   1.0%

High   6.9%

Low   5.7%

High   5.8%

Low   6.8%

Female   6.7%

Male   6.2%

Tutor Answer (A)
High 13.0%

Low 14.5%

High 13.2%

Low 14.4%

Female 14.8%

Male 13.5%

High 10.3%
Low   6.3%

High   9.1%

Low   7.3%

Female   8.3%

Male   8.2%

Tutor

Acknowledgement (ACK)

High   2.3%

Low   1.5%

High   2.5%
Low   1.2%

Female   1.2%

Male   2.1%

High   8.8%

Low   6.1%

High   8.6%

Low   6.0%

Female   6.0%

Male   7.8%

Tutor

Extra Domain (EX)

High   6.9%
Low   9.4%

High   8.5%

Low   7.8%

Female   8.4%

Male   8.2%

High   1.2%
Low   2.2%

High   1.6%

Low   2.0%

Female   2.8%
Male   1.5%

High   0.1%

Low   0.3%

High   0.2%

Low   0.2%

Female   0.3%

Male   0.1%

High   3.5%
Low   1.6%

High   3.5%
Low   1.4%

Female   1.2%
Male   2.8%

High   4.6%

Low   4.3%

High   4.5%

Low   4.4%

Female   3.8%

Male   4.6%

Prompted Positive 

Feedback (PPF)

High   0.5%
Low   1.5%

High   0.9%

Low   1.3%

Female   1.7%
Male   0.9%

Unprompted Lukewarm

Feedback (ULF)

High   0.8%

Low   0.6%

High   0.7%

Low   0.6%

Female   0.7%

Male   0.7%

Prompted Lukewarm

Feedback (PLF)

High   0.1%
Low   0.6%

High   0.2%

Low   0.5%

Female   0.6%

Male   0.3%

Unprompted Negative

Feedback (UNF)

High   0.6%

Low   0.5%

High   0.7%

Low   0.4%

Female   0.5%

Male   0.5%

Prompted Negative

Feedback (PNF)

High   0.1%
Low   0.3%

High   0.0%
Low   0.4%

Female   0.3%

Male   0.1%

Hint/Advice (HA)
High 20.5%

Low 23.5%

High 20.8%

Low 23.5%

Female 20.5%

Male 22.4%

Request Confirmation

of Understanding (RCU)

High   0.1%
Low   0.9%

High   0.3%

Low   0.8%

Female   1.4%
Male   0.3%

T
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Figure 9. Dialogue profiles with statistically significant differences (p<0.05) in bold 
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Students were divided into low pre-test and high pre-test groups, and into low self-

efficacy and high self-efficacy groups, based on whether the student‘s score fell below or 

above the median incoming score of all participants on the pre-test or pre-survey, 

respectively. Analyses yielded the following findings (Boyer, Vouk et al., 2007; Boyer, 

Phillips et al., 2008b; Boyer, Phillips, Wallis et al., 2009b) (full quantitative results are 

shown in Figure 9):   

 High pre-test students made more acknowledgements, requested feedback less 

often, and made more declarative statements than low pre-test students.  

 Tutors paired with low pre-test students made more extra-domain statements, 

gave more prompted feedback, and made more requests for confirmation of 

understanding than tutors paired with high pre-test students.  

 Students in the high self-efficacy group made more declarative statements, or 

assertions, than students in the low self-efficacy group.  

 Tutors paired with low self-efficacy students gave more negative feedback and 

made fewer acknowledgements than tutors paired with high self-efficacy students.  

 Women made more requests for feedback and fewer declarative statements than 

men.  

 Tutors paired with women gave more positive feedback and made more requests 

to confirm understanding than tutors paired with men.  

The results provide support for Hypothesis 1.1, which stated that ―Because human tutors 

adapt their behavior based on student characteristics including skill level, self-efficacy, and 

gender, the distribution of dialogue acts within tutoring sessions will be significantly 

different when compared based on these characteristics.‖  Some tutor and student dialogue 

acts did occur with significantly different frequencies across those student characteristics. For 

example, tutors more often engaged in extra-domain conversation, provided additional 
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feedback, and more frequently engaged in discussions to gauge students‘ level of 

understanding when conversing with low pre-test or low self-efficacy students. These same 

groups of students tended to request more feedback, make fewer declarative statements, and 

make fewer acknowledgements.  

5.2 Impact of Corrective Feedback 

Although the learning gain results, as measured by difference in post-test and pre-test, 

indicate that the tutoring sessions overall were effective at increasing students‘ knowledge 

about the computing constructs involved in the programming exercise, the findings from the 

first pilot study led naturally to the question of which tutorial adaptations were more or less 

effective from either a cognitive or a motivational perspective. However, sample size, along 

with limitations on the learning gain instruments of Study I, did not allow such fine-grained 

analysis. The second pilot study was refined to address these issues.
21

   

The second pilot study generated Corpus II, which was tagged with a dialogue act 

annotation scheme that included a cognitive and a motivational/affective channel  (Section 

4.1). The primary exploratory analysis conducted on this corpus examined the impact of 

certain cognitive and motivational corrective strategies by focusing on dialogue acts utilized 

by tutors immediately following plausibly incorrect student problem-solving action 

(according to the heuristic correctness annotation described in Section 4.3). The motivational 

strategies of praise and reassurance were compared with several types of cognitive feedback 

to identify relationships with student cognitive and motivational outcomes. Of the 3,336 tutor 

utterances, 1,243 occurred directly after a student problem-solving action that had been 

                                                 

21
 Recall that all three studies, including the two pilot studies and the main study, were exploratory in nature, 

not confirmatory. There were no control groups involved. Future work should include control groups to gauge 

the effectiveness of the tutoring treatment compared to another meaningful condition such as classroom 

instruction or reading edited texts (VanLehn et al., 2007).  
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tagged questionable. Because these utterances immediately followed student action that 

presumably warranted correction, this subset of tutorial utterances served as the basis for 

comparing corrective tutorial strategies. The frequency of these tutorial acts of interest is 

given in Figure 10. The dialogue acts depicted in Figure 10 constitute the second component 

of bigrams whose first component is the incorrect student action.  

 

Figure 10. Dialogue acts that follow incorrect student task action 



www.manaraa.com

 

 

 

70 

 Overall, according to difference in pre-test and post-test, the forty-three tutoring 

sessions were effective at increasing students‘ knowledge of computing constructs related to 

the programming task. The mean learning gain from pre-test to post-test was 5.9%, a 

statistically significant difference (p=0.038, t-test with pooled variance, 42 DF, SD=0.18), 

though displaying a modest effect size of 0.33. For this study, cognitive benefit and 

motivational benefit were considered. Students rated their own self-efficacy regarding the 

subject matter significantly higher, 12.1% on average, after the tutoring session than before 

(p=0.0021, t-test with pooled variance, 42 DF, SD=0.24) with effect size 0.5.  

As in the first pilot study, the student outcomes of learning gain and self-efficacy gain 

for each participant were partitioned into binary categories of High and Low based on the 

median learning gain across all participants of 10.0%. Multiple logistic regression was then 

applied, with the outcome category (High learning gain vs. Low learning gain and High self-

efficacy gain vs. Low self-efficacy gain) as the predicted variable, to determine whether a 

relationship existed between corrective tutorial strategy and student outcomes. In these 

logistic regression models, the number of occurrences of particular tutoring strategies were 

treated as predictors; in addition, the students‘ incoming values of pre-test score and initial 

self-efficacy rating were treated as predictors to control for their effects on the outcomes of 

the session. All of the findings in the remainder of this section are related to Hypothesis 1.2, 

which states that the frequency of some tutorial moves will be positively correlated with 

motivational outcomes and negatively correlated with learning.  

5.2.1 Presence of tutorial encouragement 

Two categories of corrective tutorial utterances are first considered: those with and those 

without explicit encouragement (i.e., praise or reassurance). Both these categories may, but 

need not, contain cognitive feedback components. We restrict the analysis to only cognitive 

feedback in the next subsection, and later omit all such feedback to consider standalone 



www.manaraa.com

 

 

 

71 

tutorial encouragement. A logistic regression model quantified the significant relationships 

between tutorial encouragement and learning gain, revealing that after accounting for the 

effects of pre-test score and incoming self-efficacy rating (both of which were significant in 

the model with p<0.001), observations containing tutorial encouragement were 56%
22

 less 

likely to result in high learning gain than observations without explicit tutorial 

encouragement (p=0.001). On the other hand, tutorial encouragement was weakly linked to 

self-efficacy gains, with explicit encouragement being 57% more likely to result in high self-

efficacy gain than tutorial responses that had no explicit praise or reassurance (p=0.054). 

These models suggest that the presence of tutorial encouragement in response to 

questionable student problem-solving action is weakly linked to self-efficacy gain but may be 

associated with lower learning gain.  

5.2.2 Adding encouragement to positive feedback 

Corrective tutorial acts that were tagged as cognitive feedback were compared for relative 

impact of those with and without explicit tutorial praise or reassurance. Because the co-

occurrence of cognitive feedback with reassurance was very low (n=2), we omit this strategy 

from consideration and compare the two strategies of purely cognitive feedback and cognitive 

feedback plus praise. A logistic regression model built as described above revealed that 

observations in which the tutor used cognitive feedback plus praise were associated with 

40% lower odds of high learning gain than observations in which the tutor used purely 

cognitive feedback. No significant impact was observed on self-efficacy gain. These results 

suggest that in response to questionable student problem-solving action, to achieve learning 

                                                 

22
 This value and its counterparts throughout this section represent logistic regression point estimates of odds 

ratio (analogous to the regression coefficient in multiple linear regression). The accompanying p-value indicates 

the level at which the predictor variable was significant in the model.  
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gains, purely cognitive feedback is preferred over cognitive feedback plus praise, while self-

efficacy gain does not appear to be impacted either way.  

5.2.3 Standalone tutorial encouragement 

In this corpus, tutorial encouragement is sometimes encountered with no cognitive feedback 

component; that is, the tutorial utterance is in no way aimed at giving substantive task-related 

feedback, but instead, is aimed at the student‘s motivational or affective state through explicit 

praise or reassurance. We now consider this tutorial strategy of standalone motivational acts. 

Unlike the previous results that had a consistent (or no statistically significant) impact on 

student sub-groups, and were therefore reported only for the general student population, 

purely motivational statements appear to affect low and high self-efficacy students 

differently. A separate logistic regression was run for the low initial self-efficacy and high 

initial self-efficacy student groups. Among students with low incoming self-efficacy, 

observations in which the tutor employed a standalone motivational act were 300% as likely 

to be in the higher self-efficacy gain group as observations in which the tutor employed a 

purely cognitive statement or a cognitive statement combined with encouragement (p=0.039). 

In contrast, among students with high initial self-efficacy, a purely motivational tactic 

resulted in 90% lower likelihood of being in the high self-efficacy gain group. Standalone 

motivational acts showed no statistically different impact on learning gain compared to other 

tutorial acts (p=0.268). This relationship held for both the low self-efficacy (p=0.216) and 

high self-efficacy subgroups (p=0.441) with regard to impact on learning gain. These results 

suggest that standalone praise or reassurance may be useful for increasing self-efficacy gain 

among low initial self-efficacy students, but may be associated with lower self-efficacy gain 

in high initial self-efficacy students. In addition, standalone praise or reassurance may not be 

associated with higher learning gains.  
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5.2.4 Superiority of positive cognitive feedback 

We have seen evidence thus far that explicit tutor encouragement in the form of praise or 

reassurance has mixed effects on learning and self-efficacy gains. We now consider the class 

of purely cognitive tutorial moves, i.e., all tutorial acts that have no explicit encouragement 

attached. The strategies under consideration here are positive, lukewarm, negative, and 

neutral cognitive feedback plus tutorial questions. Because positive cognitive feedback 

related similarly to each of the other types of cognitive moves, we forego pairwise 

comparisons and instead contrast positive cognitive feedback against the group of all other 

purely cognitive strategies. Chi-square analysis reveals positive cognitive feedback had a 

significantly different impact on self-efficacy than other strategies (p=0.0028). A logistic 

regression refined the relationship, revealing positive feedback resulted in 190% increased 

odds of high student self-efficacy gain compared to the other cognitive strategies (p=0.0057). 

Positive cognitive feedback did not differ significantly from other types of cognitive 

strategies in a Chi-square comparison with respect to learning gains (p=0.390). This result 

suggests that when dealing with questionable student problem-solving action, positive 

cognitive feedback is preferable to other types of cognitive feedback for eliciting self-efficacy 

gains, but this type of feedback is not found to be significantly associated with higher or 

lower learning gains.  

5.2.5 Discussion 

This section has examined corrective feedback as defined by bigrams of plausibly incorrect 

student actions and the subsequent tutorial move. The results provide evidence regarding 

Hypothesis 1.2, which states that the frequency of some tutorial moves will be positively 

correlated with motivational outcomes and negatively correlated with learning. The presence 

of explicit tutorial encouragement was associated with the outcomes in this way, highlighting 
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the tension that sometimes exists between cognitive and affective goals in tutoring (Section 

2.1.2).  

5.3 Tutor Initiative 

The two pilot studies utilized a number of tutors; therefore, no single tutor interacted with a 

large number of student participants. The third study was conducted using only the two tutors 

who had been identified as highly effective in previous studies. In addition, these two tutors 

had been observed in previous studies to have very different tutoring approaches. The 

primary exploratory analysis of Corpus III examines the differences between these tutors 

with respect to the conversational initiative, indicating which participant was directing the 

dialogue at a given moment (Walker & Whittaker, 1990).  

Because the level of student autonomy is thought to support increased motivation 

(Dickinson, 1995), it was hypothesized that different levels of tutor initiative (that is, taking 

control of the problem solving and dialogue)
3
 might be associated with differing student 

outcomes. Results presented in this section explore whether there was a difference in learning 

gains (measured by post-test score minus pre-test score) or self-efficacy gains (as measured 

by self-efficacy post-survey score minus pre-survey score) between groups of students paired 

with tutors who naturally took significantly different levels of initiative. There were sixty-one 

tutoring sessions distributed approximately equally between the tutors. From these sessions, 

fifteen were randomly selected for each tutor yielding a total of thirty sessions to be 

annotated for initiative using the annotation scheme described in Section 4. 3.  

 Each STUDENT-INITIATIVE and TUTOR-INITIATIVE tag was associated with a period of 

time over which that instance of the tutoring mode occurred. The sum (in minutes) of all 

                                                 

3
 The software permitted a synchronized view of the student‘s problem solving, but tutors were not able to edit 

the solution. Nonetheless, tutor initiative was present when the student took only programming actions that the 

tutor had specifically directed, as described in Section 4.3.  
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TUTOR-INITIATIVE periods in a given tutorial session divided by the total time elapsed during 

the session yielded the percentage of the tutoring session that was spent in TUTOR-INITIATIVE 

mode. One tutor took initiative 55% of the time on average, while the other tutor took 

initiative 73% of the time. We refer to the tutor who took initiative 55% of the time as the 

moderate tutor, while the other tutor is referred to as the proactive tutor. This difference in 

approach is significantly different (p=0.029, t-test with pooled variances, 28 DF, SD=0.21). 

One possible explanation for this difference could be that, despite the randomized assignment 

of students to tutors, the moderate tutor may have been assigned a group of students with a 

different level of preparedness than the proactive tutor. However, analysis of pre-test scores 

do not suggest that this confounding factor was present. Average student pre-test scores were 

79.5% for the moderate tutor and 78.9% for the proactive tutor, yielding no evidence of a 

difference in student preparedness between the two treatment groups for the subset of 

students considered in the initiative annotation (p=0.764, t-test with pooled variances, 28 DF, 

SD=0.19).  

 For each participant, the cognitive outcome of learning gain was calculated as post-

test score minus pre-test score. The mean learning gain across each set of fifteen annotated 

student sessions was 6.9% for the moderate tutor and 6.0% for the proactive tutor, yielding 

no evidence of improved learning gains associated with a particular level of student control 

(p=0.895, t-test with pooled variances, 27 DF, SD=0.09).  

Therefore, it will be assumed that in the present context the thirty sessions were 

representative of the larger data set in terms of tutor initiative because the subset was selected 

at random. Also, it is meaningful to consider all learning gains and assume each tutor took a 

sufficiently uniform approach across all tutoring sessions. The mean learning gain for all 

students tutored with the moderate approach was 6.9%, while the mean learning gain for the 

proactive tutor was 8.6%. In this larger set of learning gains, there is still no evidence that 
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one tutor was more or less effective than the other (p=0.569, t-test with pooled variances, 58 

DF, SD=0.11).  

Student self-efficacy
23

 gain was measured as the difference between post-survey and 

pre-survey score on an item that asked students to rate their certainty, on a scale of 0-100, 

that they have the capability to learn the necessary course material for their introductory 

computer science class. A significantly different average self-efficacy gain was found 

between student groups paired with the two tutors. Students who worked with the proactive 

tutor had an average self-efficacy gain of less than one point from pre-survey to post-survey. 

On the other hand, students paired with the moderate tutor had an average self-efficacy gain 

of more than six points, which is significantly higher (p=0.047, t-test with pooled variance, 

28 DF, SD=6. 5). This finding suggests that within the two levels of tutor initiative 

considered here, affording the student more control may yield motivational benefit without 

sacrificing cognitive outcomes. The results speak to Hypothesis 1.3, which states that the 

level of autonomy given to students during tutoring will be correlated with learning and 

motivational outcomes. There is no evidence that the level of autonomy is statistically 

significantly correlated with learning, but there is a significant correlation between giving the 

student more autonomy and facilitating gains in self-efficacy.  

5.4 Discussion of Exploratory Findings 

The exploratory findings suggest that computer science tutors naturally adapt to student 

characteristics, and that particular tutorial strategies may be associated with higher student 

learning or self-efficacy gains. These patterns complement research results from other 

tutoring domains. For example, student utterances exhibiting reasoning and reasoning-

oriented questions posed by the tutor have been shown to be positively correlated with 

                                                 

23
 Recall that the term self-efficacy differs from confidence, as described in Section 1.5.  
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learning in a human-computer corpus for qualitative physics, as has the introduction of new 

concepts in the dialogue by students in a human-human corpus (Forbes-Riley et al., 2005). 

Student deep reasoning questions (as opposed to questions that ask students to respond with a 

simple fact) have also been associated with improved learning (Graesser et al., 2008), as has 

the dialogue property of lexical cohesion, especially for low-performing students (Ward & 

Litman, 2006).  

The need for balancing cognitive and motivational strategies has also been recognized 

in other domains; for example, the presence of cognitive feedback, as opposed to 

motivational ―progress‖ feedback, was responsible for higher learning gains in experimental 

versions of AutoTutor (Jackson & Graesser, 2007). On the other hand, the presence of 

cognitive feedback lowered students‘ motivational ratings. Students working with modified 

versions of a natural science tutor learned better when given cognitive rather than affective 

feedback (Tan & Biswas, 2006). Finally, in a tutoring system for ecology, initially 

unmotivated students were found to perform better with motivational adaptation and 

feedback, while students who were already motivated did not benefit from the motivational 

support (Rebolledo-Mendez et al., 2006).  

These findings are valuable for informing the behavior of tutoring systems as well as 

giving insight into the cognitive and motivational processes at work as students learn through 

tutoring. However, the findings raise additional questions regarding specific tutoring 

phenomena, such as the benefits of positive cognitive feedback, that can be explored further 

through experimental investigation. This is a promising direction for future work. 

Additionally, these exploratory analyses have provided a basic understanding of the structure 

of task-oriented dialogue for introductory computer science, a foundation for the models 

described Chapters 6 and 7.  
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CHAPTER 6    

Modeling Hidden Tutorial Dialogue State  

with Hidden Markov Models 

The notion that dialogue has an underlying unobservable structure that influences the 

observed activity is widely accepted. A major goal of this dissertation is to explore whether 

this hidden dialogue state can be discovered automatically with hidden Markov models 

(HMMs), as evidenced by whether the HMM-learned structure correlates with student 

outcomes and proves useful for the dialogue management tasks of user utterance 

interpretation and system dialogue move selection. Before embarking on those tasks, it was 

desirable to investigate whether the hidden dialogue states discovered by HMMs from the 

tutoring corpora qualitatively resemble tutoring modes from the literature (Cade et al., 2008) 

and whether these automatically extracted states are correlated with student learning. This 

chapter describes that investigation.  

Section 6.1 provides an introduction to Markov models (MMs) and HMMs. 

Section 6.2 describes preliminary application of hidden Markov modeling to the corpus, 

qualitative analysis of which suggests that HMMs can discover tutoring modes in an 

unsupervised fashion (that is, with no labeled modes present in the training data). Section 6.3 

examines an enhancement to these basic HMMs that involves leveraging information about 

adjacency pairs, which are dialogue acts that tend to co-occur because the first act establishes 

an expectation for the second act to follow (Schegloff & Sacks, 1973). Finally, Section 6.4 
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presents findings regarding the correlation between student learning and the relative 

frequency of the hidden states of the learned HMMs.
24

 

6.1 Introduction to Hidden Markov Models 

To introduce hidden Markov models (HMMs) it is useful to first present an overview of first-

order Markov models (MMs). In the context of dialogue, a first-order Markov model is also 

referred to as a bigram model (Forbes-Riley & Litman, 2005), and it serves as a useful 

baseline for comparing the performance of more complex modeling approaches.  

A Markov model that generates observation (state) sequence o1o2…ot is defined in the 

following way. The observation symbols are drawn from the alphabet ∑={σ1, σ2, …, σM}, and 

the initial probability distribution is Π=[πi] where πi is the probability of a sequence 

beginning with observation symbol σi. The transition probability distribution is A=[aij], 

where aij is the probability of observing state j immediately after state i. Figure 11 illustrates 

the time-slice topology of an MM in the context of task-oriented dialogue modeling, where 

the observations consist of dialogue acts and labeled subtask actions. Under the first-order 

MM assumptions, each observation depends only on the immediately preceding observation.  

 

Figure 11. Time-slice topology of first-order Markov model 

While an MM assumes that the entire process is observable, a HMM explicitly 

models unobservable, or hidden states, within a doubly stochastic structure (Rabiner, 1989). 

For a first-order HMM, the observation symbol alphabet ∑={σ1, σ2, …, σM} is defined, along 

                                                 

24
 Sections 6.1 and 6.2 are based on HMM analysis of Corpus II from the second pilot study. Section 6.3 is 

based on analysis of Corpus III from the main tutoring study.  
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with a set of hidden states S={s1,s2,…,sN}. The transition and initial probability distributions 

are defined analogously to MMs, except that they operate on hidden states rather than on 

observation symbols. That is, Π=[πi] where πi is the probability of a sequence beginning in 

hidden state si in S. The transition matrix is A=[aij], where aij is the probability of the model 

transitioning from hidden state i to hidden state j. This framework constitutes the first 

stochastic layer of the model, which can be thought of as modeling hidden, or unobservable, 

structure. The second stochastic layer of the model governs the production of observation 

symbols: the emission probability distribution is B=[bik] where bik is the probability of state i 

emitting observation symbol k. The time-slice topology of the HMMs is depicted in Figure 

12, where each qt is in S and each ot is in ∑. Each transition emits one and only one symbol.  

 

 

Figure 12. Time-slice topology of first-order hidden Markov model 

The standard machine learning algorithm for acquiring HMM parameters from a set 

of observation sequences is the Baum-Welch algorithm (Rabiner, 1989; Bishop, 2006). 

Baum-Welch is an instance of the general machine learning algorithm Expectation 

Maximization, in which parameters are iteratively estimated and then refined until 

convergence or until a stopping criterion is met. In the current work, this algorithm and the 

Viterbi algorithm described below were implemented in Java.
25

  

                                                 

25
 Eunyoung Ha implemented this software. 
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 In addition to fitting the HMM parameters, an important HMM problem involves 

identifying the best-fit sequence of hidden states that corresponds to a given observation 

sequence. The Viterbi algorithm (Rabiner, 1989; Bishop, 2006; Jurafsky & Martin, 2008) is 

used for this task. This algorithm operates over a lattice that includes all possible hidden 

states at each possible time step in the observation sequence. Rather than explicitly 

computing probabilities over the exponentially large space of paths through the lattice, the 

algorithm leverages the Markov property of the model and retains only the path at a given 

time step t and particular state q that had the highest probability until that point. At the final 

time step T, one state will correspond to the most probable complete path. By backtracking 

through the lattice from that most probable ending state, the algorithm identifies the most 

probable hidden state at each time step.   

6.2 Identifying Hidden Tutorial Dialogue States with HMMs 

The primary impetus for selecting HMMs as the modeling framework was the notion that the 

HMMs‘ hidden layer can explicitly capture tutorial dialogue modes, sometimes referred to as 

strategies. The work presented in this section utilizes Corpus II and its set of cognitive 

channel dialogue acts. The cognitive tags and their relative frequencies are shown in Table 6.  
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Table 6. Modified dialogue act tagset for training HMMs on Corpus II 

 

In this application of HMMs to the tutorial dialogue from Corpus II, the input sequences 

were comprised of unigram tutorial dialogue acts augmented with tags indicating the speaker. 

An example of such a sequence is, (GROUNDINGS, GROUNDINGT, QUESTIONS, STATEMENTT, 

STATEMENTS, POSITIVEFEEDBACKT). These observed symbols are provided, without any 

additional context regarding their meaning, as the input sequence for training HMMs. The 

hidden variable is interpreted as the dialogue mode. Rather than specifying a priori the 

number of dialogue modes, the best-fit number N of hidden states was learned from the 

observed sequences during model training. The measure of fit is log-likelihood, which 

indicates how likely the current model would be to generate the observed sequences. The log 
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of the original likelihood value is taken to avoid numerical underflow. For each value of N, 

seven models were randomly initialized and fine-tuned through ten-fold cross-validation on 

the corpus to obtain an average log-likelihood value.
4
 A model containing N=6 hidden states 

produced the best log-likelihood fit for the current corpus.
5
 Figure 13(A) presents the most 

important components of the emission probability distribution B=[bik] for each hidden state 

in the best-fit model. Probability values that are less than 5% are not shown in the diagram.  

We interpret each state as a dialogue mode and assign intuitive state names by examining 

the emission probability distribution of dialogue acts that occur in that state. Because State 0 

is dominated by student evaluation questions, statements, and feedback, this state is 

interpreted as Student Reflection mode. State 1 is dominated by extra-domain talk and 

conversational grounding by both the student and tutor, so this state is interpreted as 

Conversational Grounding/Extra-Domain mode. State 2 consists primarily of feedback from 

the tutor, with some statements and tutor grounding, so this state is interpreted as Tutor 

Feedback mode. State 3 is strongly dominated by tutorial statements, so this state is 

interpreted as Tutor Lecture mode. State 4 emits primarily tutor statements and tutor 

evaluation questions, so this state is interpreted as Tutor Probing and Lecture. Finally, 

State 5 is dominated by a mixture of student questions with tutor statements and feedback, so 

this state is interpreted as Interactive Collaboration mode.  

                                                 

4 Model parameters were learned with the Baum-Welch expectation maximization algorithm (Rabiner, 1989), 

beginning with randomly-initialized parameters and then iterating until convergence. Training between five and 

ten models is in keeping with standard practice when this random initialization approach is used. Ten-fold 

cross-validation involves repeated systematic sampling of the data to partition into a 90% training set and a 10% 

testing set.  

5  Log-likelihood fit is a measure of how likely the observed sequences would be under a proposed model. The 

number of hidden states, N, was allowed to range from 2 to 20, with the best fit produced by N=6.  
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Figure 13. Unigram HMM 
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The transition matrix A=[aij] in Figure 13(B) shows the probability of transitioning from one 

hidden state to the next. This transition matrix represents the higher-level flow of dialogue. 

For example, from State 0 (Student Reflection), the dialogue transitions with probability 

0.712 to State 2 (Tutor Feedback) and with probability 0.107 to State 5 (Interactive 

Collaboration). From State 2 (Tutor Feedback), the dialogue is most likely to transition to 

State 3 (Tutor Lecture), with State 4 (Tutor Probing and Lecture) or State 5 (Interactive 

Collaboration) also likely candidates for the next mode.  

Because the learned HMM implies a best-fit sequence of hidden states for each 

observed sequence of dialogue acts,
6
 it is possible to summarize the frequency of each 

dialogue mode across the corpus as depicted in Figure 13(C). Not surprisingly, State 3 (Tutor 

Lecture) occurs most frequently. This result is expected because in the current corpus, tutor 

statements account for 40% of all dialogue acts.  

While a mapping between sets of tutoring modes is difficult to achieve (Litman et al., 

2009), qualitative inspection of the learned HMM demonstrates that the hidden states do 

resemble some tutoring modes or strategies from the literature. For example, State 0 (Student 

Reflection) consists of the student‘s own feedback, statements, and evaluation questions. 

Prior work has shown that eliciting this type of student reflection is a challenging task, even 

with the one-on-one attention provided during tutoring (Graesser & Person, 1994). Such a 

finding is consistent with State 0 accounting for only 8% of dialogue moves in the corpus. 

The structures of State 1 (Conversational Grounding/Extra-Domain) and State 3 (Tutor 

Lecture) do occur in a set of handcrafted tutoring modes for expert tutoring (Cade et al., 

2008). When comparing the experience level of tutors, those with less experience (which 

describes nearly all the tutors from Corpus II on which this HMM was built) tend to lecture 

the students more, and this finding is consistent with the large percentage of dialogue moves 

                                                 

6
 The Viterbi algorithm (Rabiner, 1989) was used to fit the best sequence of hidden states to each observation sequence.  
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that fell in the Tutor Lecture state. State 5, Interactive Collaboration, resembles the 

collaborative interaction known as Knowledge Co-Construction (KCC) (Hausmann et al., 

2004). Episodes of this highly interactive mode have been associated with higher learning. 

Recently, the study of KCC interactions in domains such as data structures for computer 

programming has yielded insights for the design of an intelligent peer-learning agent (Kersey 

et al., 2009).  

Although the HMM presented in this section offers descriptive insight into the tutorial 

strategies occurring in the corpus, one serious limitation involves a well-known property of 

HMMs, namely, that they can transition to a different hidden state at every time step. A 

model that transitions between hidden states in the middle of a pair of dependent dialogue 

moves (such as a question and answer pair) would violate an intuitive notion of dialogue 

structure; therefore, the next section presents a method by which these dependent pairs of 

dialogue moves, known as adjacency pairs (Schegloff & Sacks, 1973), are automatically 

discovered and joined before building an HMM on the modified input sequences.  

6.3 Leveraging Adjacency Pairs with Bigram HMMs 

The importance of adjacency pairs is well established in natural language dialogue. 

Adjacency pair analysis, also referred to as bigram analysis, has illuminated important 

phenomena in tutoring (Forbes-Riley & Litman, 2005; Forbes-Riley et al., 2007). The 

intuition behind adjacency pairs is that certain dialogue acts naturally occur together, and by 

grouping these acts we capture an exchange between two dialogue participants in a single 

structure. This formulation is of interest primarily because when treating sequences of 

dialogue acts as a Markov process, with or without hidden states, the addition of adjacency 

pairs offers a semantically richer observation alphabet. This section presents an HMM trained 

on sequences of dialogue act adjacency pairs from Corpus II. As part of the evolution of the 

methodology, this application of HMMs to Corpus II utilized a penalized log-likelihood 
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measure, which reduces the measure of fit as the number of parameters increases. Penalized 

log-likelihood measures are used to strike a balance between model complexity and model 

fit. To facilitate direct comparison, this section describes both a unigram and a bigram HMM 

fit using this penalized log-likelihood approach.  

6.3.1 Adjacency pair identification 

To find adjacency pairs we utilize a χ
2
 test to assess dependence of the categorical variables 

acti and acti+1 for all sequential pairs of dialogue acts that occur in the corpus. Only pairs in 

which the two speakers were different were considered; that is, speaker(acti) ≠ 

speaker(acti+1). Table 7 displays a list of all dependent adjacency pairs sorted by descending 

(unadjusted) statistical significance; the subscript on each dialogue act tag indicates tutor (T) 

or student (S).  

An adjacency-pair joining algorithm was applied to join statistically significant 

(p<0.01) pairs of dialogue acts into atomic units according to a priority determined by the 

strength of the statistical significance. Dialogue acts that were ―left out‖ of adjacency pair 

groupings were treated as atomic elements in subsequent analysis. Figure 14 shows the 

adjacency-pair joining algorithm and Figure 15 illustrates the application of the algorithm on 

a sequence of dialogue acts from the corpus.  
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Table 7. Statistically significant adjacency pairs in Corpus II 

acti acti+1 
P(acti+1|   
acti) 

P(acti+1| 
¬acti) χ2 val p-val 

EVALUATINGQUESTIONS POSITIVEFDBKT 0.48 0.07 654 <0.0001 

GROUNDINGS GROUNDINGT 0.27 0.03 380 <0.0001 

EXTRADOMAINS EXTRADOMAINT 0.34 0.03 378 <0.0001 

EVALUATINGQUESTIONT POSITIVEFDBKS 0.18 0.01 322 <0.0001 

EVALUATINGQUESTIONT STATEMENTS 0.24 0.03 289 <0.0001 

EVALUATINGQUESTIONS LUKEWARMFDBKT 0.13 0.01 265 <0.0001 

QUESTIONT STATEMENTS 0.65 0.04 235 <0.0001 

EVALUATINGQUESTIONT LUKEWARMFDBKS 0.07 0.00 219 <0.0001 

QUESTIONS STATEMENTT 0.82 0.38 210 <0.0001 

EVALUATINGQUESTIONS NEGATIVEFDBKT 0.08 0.01 207 <0.0001 

EXTRADOMAINT EXTRADOMAINS 0.19 0.02 177 <0.0001 

NEGATIVEFDBKS GROUNDINGT 0.29 0.03 172 <0.0001 

EVALUATINGQUESTIONT NEGATIVEFDBKS 0.11 0.01 133 <0.0001 

STATEMENTS GROUNDINGT 0.16 0.03 95 <0.0001 

STATEMENTS POSITIVEFDBKT 0.30 0.10 90 <0.0001 

STATEMENTT GROUNDINGS 0.07 0.04 36 <0.0001 

POSITIVEFDBKS GROUNDINGT 0.14 0.04 34 <0.0001 

LUKEWARMFDBKS GROUNDINGT 0.22 0.04 30 <0.0001 

STATEMENTT EVALUATINGQUESTIONS 0.11 0.07 29 <0.0001 

STATEMENTT QUESTIONS 0.07 0.05 14 0.0002 

GROUNDINGT EXTRADOMAINS 0.07 0.03 14 0.002 

GROUNDINGT GROUNDINGS 0.10 0.05 9 0.0027 

EVALUATINGQUESTIONT EVALUATINGQUESTIONS 0.13 0.08 8 0.0042 
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Sort adjacency pair list L by descending statistical significance 

For each adjacency pair (act1, act2) in L 

        For each dialogue act sequence (a1, a2, …, an)  

        in the corpus 

                Replace all pairs (ai=act1, ai+1=act2) with a new single symbol (act1act2) 

Figure 14. Adjacency-pair joining algorithm 

 

 
Figure 15. Example of input sequences before and after adjacency-pair joining 

6.3.2 Model training 

In keeping with the goal of automatically discovering dialogue structure, it was desirable to 

find n, the best number of hidden states for the HMM, during modeling. To this end, seven 

models were trained and ten-fold cross-validated, each featuring randomly initialized 

parameters, for each number of hidden states n from 2 to 15, inclusive. 
26

  The average log-

likelihood fit from ten-fold cross-validation was computed across all seven models for each 

n, and this average log-likelihood ln was used to compute the Akaike Information Criterion, a 

maximum-penalized likelihood estimator that prefers simpler models (Scott, 2002). This 

modeling approach was used to train HMMs on both the dialogue act and the adjacency pair 

input sequences.  

                                                 

26
 n=15 was chosen as an initial maximum number of states because it comfortably exceeded the hypothesized 

range of 3 to 7 (informed by the tutoring literature). The Akaike Information Criterion (Scott, 2002) measure 

steadily worsened above n = 5, confirming no need to train models with n > 15.  
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The input sequences of individual dialogue acts contain 16 unique symbols because each 

of the 8 dialogue act tags (Table 6) was augmented with a label of the speaker, either tutor or 

student. The best-fit HMM for this input sequence contains nDA=5 hidden states. The 

adjacency pair input sequences contain 39 unique symbols, including all dependent 

adjacency pairs (Table 7) along with all individual dialogue acts because each dialogue act 

occurs at some point outside an adjacency pair. The best-fit HMM for this input sequence 

contains nAP=4 hidden states. In both cases, the best-fit number of dialogue modes implied by 

the hidden states is within the range of what is often considered in traditional tutorial 

dialogue analysis (Cade et al., 2008; Graesser et al., 1995).  

Qualitatively evaluating the impact of grouping the dialogue acts into adjacency pairs 

requires a fine-grained examination of the generated HMMs to gain an insight into how each 

model interprets the student sessions. Figure 16(A) displays the emission probability 

distributions for the dialogue act HMM. State 0DA, Tutor Lecture,
27

 is strongly dominated by 

tutor statements with some student questions and positive tutor feedback. State 1DA 

constitutes Grounding/Extra-Domain, a conversational state consisting of acknowledgments, 

backchannels, and discussions that do not relate to the computer science task. State 2DA, 

Student Reflection, generates student evaluation questions, statements, and positive and 

negative feedback. State 3DA is comprised of tutor utterances, with positive feedback 

occurring most commonly, followed by statements, grounding, lukewarm feedback, and 

negative feedback. This state is interpreted as a Tutor Feedback mode. Finally, State 4DA, 

Tutor Lecture/Probing, is characterized by tutor statements and evaluative questions with 

some student grounding statements.  

                                                 

27
 For clarity, the states of each HMM have been named according to an intuitive interpretation of the emission 

probability distribution.  
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(A) 
 

(B) 

Figure 16. Dialogue act (unigram) and adjacency pair (bigram) HMMs 

 The state transition diagram in Figure 16(A) illustrates that Tutor Lecture (0DA) and 

Grounding/Extra-Domain (1DA) are stable states whose probability of self-transition is high, 

at 0.75 and 0.79, respectively. Perhaps not surprisingly, Student Reflection (2DA) is most 

likely to transition to Tutor Feedback (3DA) with probability 0.77. Tutor Feedback (3DA) 
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transitions to Tutor Lecture (0DA) with probability 0.60, Tutor Lecture/Probing (4DA) with 

probability 0.26, and Student Reflection (2DA) with probability 0.09. Finally, Tutor 

Lecture/Probing (4DA) very often transitions to Student Reflection (2DA) with probability 0.82. 

Figure 16(B) displays the emission probability distributions for the HMM that was 

trained on the input sequences of adjacency pairs. State 0AP, Tutor Lecture, consists of 

tutorial statements, positive feedback, and dialogue turns initiated by student questions. In 

this state, student evaluation questions occur in adjacency pairs with positive tutor feedback, 

and other student questions are answered by tutorial statements. State 1AP, Tutor Evaluation, 

generates primarily tutor evaluation questions, along with the adjacency pair of tutorial 

statements followed by student acknowledgements. State 2AP generates conversational 

grounding and extra-domain talk; this Grounding/Extra-Domain state is dominated by the 

adjacency pair of student grounding followed by tutor grounding. State 3AP is comprised of 

several adjacency pairs: student questions followed by tutor answers, student statements with 

positive tutor feedback, and student evaluation questions followed by positive feedback. This 

Question/Answer state also generates some tutor grounding and student evaluation questions 

outside of adjacency pairs.  

To illustrate how the above models fit the data, Figure 17 depicts the progression of 

dialogue modes that generate an excerpt from the corpus.  
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Figure 17. Dialogue act sequences as generated by unigram and bigram HMMs 

In both models, the most commonly occurring dialogue mode is Tutor Lecture, which 

generates 45% of observations in the dialogue act model and around 60% in the adjacency 

pair model. Approximately 15% of the dialogue act HMM observations are fit to each of 

states Student Reflection, Tutor Feedback, and Tutor Lecture/Probing. This model spends the 

least time, around 8%, in Grounding/Extra Domain. The adjacency pair model fits 

approximately 15% of its observations to each of Tutor Evaluation and Question/Answer, 

with around 8% in Grounding/Extra-Domain.  

6.3.3 Qualitative comparison of unigram and bigram HMM 

While the two models presented in this section were derived from the same corpus, it is 

important to exercise caution when making direct structural comparisons. The models contain 

neither the same number of hidden states nor the same emission symbol alphabet. It is 

meaningful to note that the adjacency pair model with nAP=4 achieved an average log-

likelihood fit on the training data that was 5.8% better than the same measure achieved by the 
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dialogue act model with nDA=5, despite the adjacency pair input sequences containing greater 

than twice the number of unique symbols.28 

The qualitative comparison begins by examining the modes that are highly similar in 

the two models. State 2AP generates grounding and extra-domain statements, as does 

State 1DA. These two states both constitute a Grounding/Extra-Domain dialogue mode. One 

artifact of the tutoring study design is that all sessions begin in this state due to a compulsory 

greeting that signaled the start of each session. More precisely, the initial state probability 

distribution for each HMM assigns probability 1 to this state and probability 0 to all other 

states.  

Another dialogue mode that is structurally similar in the two models is Tutor Lecture, 

in which the majority of utterances are tutor statements. This mode is captured in State 0 in 

both models, with State 0AP implying more detail than State 0DA because it is certain in the 

former that some of the tutor statements and positive feedback occurred in response to 

student questions. While student questions are present in State 0DA, no such precise ordering 

of the acts can be inferred.  

Other states do not have one-to-one correspondence between the two models. State 

2DA, Student Reflection, generates only student utterances and the self-transition probability 

for the state is very low; the dialogue usually visits State 2DA for one turn and then transitions 

immediately to another state. Although this aspect of the model reflects the fact that students 

rarely keep the floor for more than one utterance at a time in the corpus, such quick dialogue 

mode transitions are inconsistent with an intuitive understanding of tutorial dialogue modes 

as meta-structures that usually encompass more than one dialogue turn. This phenomenon is 

perhaps more accurately captured in the adjacency pair model. For example, the dominant 

                                                 

28
 This comparison is meaningful because the models depicted here provided the best fit among all sizes of 

models trained for the same input scenario.  
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dialogue act of State 2DA is a student evaluation question (EQs). In contrast, these dialogue 

acts are generated as part of an adjacency pair by State 3AP; this model joins the student 

questions with subsequent positive feedback from the tutor rather than generating the 

question and then transitioning to a new dialogue mode.  

6.3.4 Discussion 

One promising result of this early work emerges from the fact that by applying hidden 

Markov modeling to sequences of adjacency pairs, meaningful dialogue modes have emerged 

that are empirically justified. The number of these dialogue modes is consistent with what 

researchers have traditionally used as a set of hypothesized tutorial dialogue modes. 

Moreover, the composition of the dialogue modes reflects some recognizable aspects of 

tutoring sessions: tutors teach through the Tutor Lecture mode and give feedback on student 

knowledge in a Tutor Evaluation mode. Students ask questions and state their own perception 

of their knowledge in a Question/Answer mode. Both parties engage in ―housekeeping‖ talk 

containing such things as greetings and acknowledgements, and sometimes, even in a 

controlled environment, extra-domain conversation occurs between the conversants in the 

Grounding/Extra-Domain mode.  

Although the tutorial modes discovered may not map perfectly to sets of handcrafted 

tutorial dialogue modes from the literature, it is rare for such a perfect mapping to exist even 

between those sets of handcrafted modes. In addition, the HMM framework allows for 

succinct probabilistic description of the phenomena at work during the tutoring session: 

through the state transition matrix, we can see the back-and-forth flow of the dialogue among 

its modes.  

Automatically learning dialogue structure is an important step toward creating more 

robust tutorial dialogue management systems. This section has presented two hidden Markov 

models in which the hidden states are interpreted as dialogue modes for task-oriented tutorial 
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dialogue. These models were learned in an unsupervised fashion from sequences of manually 

labeled dialogue acts. The next section discusses work to identify associations between the 

structure of learned HMMs and the student learning outcomes.  

6.4 Correlations Between Hidden Dialogue State and Student Learning 

The preliminary investigations into learning HMMs from corpora of tutorial dialogue and 

examining their descriptive power qualitatively were conducted on Corpus II from the second 

pilot study, as described in Sections 6.2 and 6.3. The qualitative examination suggests that 

HMMs can discover tutoring modes, or hidden dialogue states, in an unsupervised fashion 

(that is, without hand labeling of the tutoring modes), and that these modes bear a 

resemblance to tutoring modes from the literature. One important aspect of validating these 

models is to identify statistically significant correlations between the tutoring modes learned 

by the models and the outcome of student learning as measured by learning gain from pre-

test to post-test, a line of analysis that directly investigates Hypothesis 2.1.  

The HMMs in this section were learned from Corpus III, which was produced by the 

main observational tutoring study. Notably, this study differs from the two pilot studies 

because 1) the instrument to measure learning was improved based on piloting and further 

refined based on input from three experts in teaching introductory computer science, and 2) 

in addition to dialogue act annotation, the task actions in Corpus III were manually annotated 

(Section 4.2), providing a rich basis for learning models that capture the interplay between 

dialogue and task.  

6.4.1 Learning separate HMMs by tutor 

The main tutoring study featured two paid tutors who had achieved the highest average 

student learning gains in the two pilot studies. Tutor A was a male computer science student 

in his final semester of undergraduate studies. Tutor B was a female third-year computer 
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science graduate student. Exploratory analysis of the corpus suggested that the tutors took 

different approaches with respect to initiative, but achieved similar learning gains (Section 

5.3). Because of the observed differences between tutoring strategies, a separate HMM was 

derived from the tutoring sessions with each tutor. The ten-fold cross-validation methodology 

was used, as described in the previous section, utilizing a penalized log-likelihood estimator 

to measure model fit.  

The best-fit HMM for Tutor A‘s dialogues features eight hidden states. Figure 18 

depicts a subset of the transition probability diagram with nodes representing hidden states 

(tutoring modes). Inside each node is a histogram of its emission probability distribution. For 

simplicity, only five of the eight states are displayed in this diagram; each state that was 

omitted mapped to less than 5% of the observed data sequences and was not significant in the 

correlational analysis. Each tutoring mode has been interpreted and named based on its 

structure. For example, State 4 is dominated by correct task actions; therefore, it is named 

Correct Student Work. State 6 is comprised of student acknowledgements, pairs of tutor 

statements, some correct task actions, and assessing questions by both tutor and student; this 

state is labeled Student Acting on Tutor Help. The best-fit model for Tutor B‘s dialogues 

features ten hidden states. A portion of this model, consisting of all states that mapped to 

more than 5% of observations, is displayed in Figure 19.  

Some tutoring modes with similar structures were identified by both models. Both 

models feature a Correct Student Work mode characterized by the student’s successful 

completion of a subtask. This state maps to 38% of observations with Tutor A and 29% of 

observations with Tutor B. In both cases the Correct Student Work mode occurs more 

frequently than any other mode.  

The next three most frequently occurring modes each maps onto 10-15% of the 

observations. For Tutor A, one such mode is Tutor Explanations with Feedback, while for 

Tutor B a corresponding mode is Tutor Explanations with Assessing Questions. In both cases, 
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the mode involves tutors explaining concepts or task elements. A key difference is that with 

Tutor A, the explanation mode includes frequent negative elaborated feedback or positive 

content-free feedback, while for Tutor B the explanation mode features questions in which 

the tutor aims to gauge the student’s knowledge. A similar pattern emerges with each tutor’s 

next most frequent mode: for Tutor A, this mode is Student Work with Tutor Positive 

Feedback; for Tutor B, the mode is Student Work with Tutor Assessing Questions. These 

corresponding modes illuminate a tendency for Tutor A to provide feedback in situations 

where Tutor B chooses to ask the student a question. For Tutor A, the only mode that 

featured assessing questions was Student Acting on Tutor Help, which as we will discuss, 

was positively correlated with student learning.  
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Figure 18. Portion of bigram HMM for Tutor A, Corpus III 
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Figure 19. Portion of bigram HMM for Tutor B, Corpus III 

6.4.2 Correlations between hidden dialogue states and student learning 

With the learned models in hand, the next goal was to identify statistical relationships 

between student learning and the automatically extracted tutoring modes. The models 

presented above were used to fit each sequence of observed dialogue acts and task actions 

onto the set of hidden states (i.e., tutoring modes) using maximum likelihood. The 

transformed sequences were used to calculate the frequency distribution of the modes that 

occurred in each tutoring session (e.g., State 0 = 32%, State 1 = 15%. . . State 8 = 3%). The 
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average relative frequencies of each hidden state across all tutoring sessions with each tutor 

are depicted in Figure 20.  

 

(A) 

 

(B) 

Figure 20. Relative frequency of hidden states across corpus for Tutor A and Tutor B 

For each HMM, correlations were generated between the learning gain of each 

student session and the relative frequency vector of tutoring modes for that session to 

determine whether significant relationships existed between student learning and the 

proportion of discrete events (dialogue and problem solving) that were accounted for by each 

tutoring mode. For Tutor A, the Student Acting on Tutor Help mode was positively correlated 

with learning (r=0.51;p<0.0001). For Tutor B, the Tutor Elaborated Feedback mode was 

positively correlated with learning (r=0.55; p=0.01) and the Work in Progress mode was 

negatively correlated with learning (r=-0.57; p=0.0077).  

This analysis has identified significant correlation between student learning gains and 

the automatically extracted tutoring modes modeled in the HMMs as hidden states. While 
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students who worked with either tutor on average achieved significant learning, each group 

of students displayed a substantial range of learning gains. The correlation analysis leveraged 

this data spread to gain insight into which aspects of the tutorial interaction were related to 

higher or lower learning gains.  

6.4.3 Discussion 

For Tutor A, the relative frequency of the Student Acting on Tutor Help mode was positively 

correlated with student learning. This mode was characterized primarily by student 

acknowledgments and also featured tutor explanations, correct student work, positive tutor 

feedback, and assessing questions from both tutor and student. The composition of this 

tutoring mode suggests that these observed events possess a synergy that, in context, 

contributed to student learning. In a learning scenario with novices, it is plausible that only a 

small subset of tutor explanations were grasped by the students and put to use in the learning 

task. The Student Acting on Tutor Help mode may correspond to those instances, in contrast 

to the Correct Student Work mode in which students may have been applying prior 

knowledge.  

For Tutor B, the Tutor Elaborated Feedback mode was positively correlated with 

student learning. This mode was relatively infrequent, mapping to only 7% of tutoring events. 

However, providing direct feedback represents a departure from this tutor‘s more frequent 

approach of asking assessing questions of the student. Given the nature of the learning task 

and the corresponding structure of the learning instrument, students may have identified 

errors in their work and grasped actionable new knowledge most readily through this tutor‘s 

direct feedback.  

For Tutor B, the Work in Progress mode was negatively correlated with learning. This 

finding is consistent with observations that in this tutoring study, students did not easily seem 

to operationalize new knowledge that came through tutor hints, but rather, often needed 



www.manaraa.com

 

 

 

103 

explicit constructive feedback. The Work in Progress mode features no direct tutor content 

feedback. Tutor questions and explanations (which are at a more abstract level than the 

student‘s solution) in the face of incomplete student work may not have been an effective 

tutoring approach in this study.  

The work described in this section confirms Hypothesis 2.1, that the hidden dialogue 

structure extracted by HMMs is correlated with tutoring outcomes. This work takes a step 

toward fully automatic extraction of tutorial strategies from corpora, a contribution that has 

direct application in human tutoring research. The approach also can be used in tutorial 

dialogue system development by producing a data-driven library of system strategies, and as 

the next two chapters discuss, by contributing to the creation of data-driven tutorial dialogue 

management models.  
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CHAPTER 7    

Dialogue Act Classification in Task-Oriented Tutorial Dialogue 

All dialogue systems, including tutorial dialogue systems, must address the two central 

challenges of a) interpreting user utterances and b) selecting system dialogue moves. This 

chapter focuses on user utterance interpretation in terms of dialogue acts (Austin, 1962). 

Dialogue acts are abstractions that provide a valuable intermediate representation that can be 

used for dialogue management. The models presented in this chapter were developed from 

Corpus III data generated by the third, and main, tutoring study. The corpus consists of 

human textual dialogue utterances and a separate, parallel stream of user-generated task 

actions. To classify student utterances with respect to dialogue acts in this complex task-

oriented domain, classifiers are constructed that utilize lexical and syntactic features along 

with structural features including task/subtask labels, dialogue act history, speaker, and 

hidden dialogue state in a vector-based representation. This chapter explores whether the 

addition of HMM and task/subtask features improves the predictive performance of the 

dialogue act classifiers. The results speak to Hypothesis 2.2. 

 Because this chapter focuses on student utterances only, some dialogue act labels 

from the symmetric tutor/student dialogue act classification scheme in Table 4 (Section 4. 1) 

were renamed to better reflect dialogue acts from a student‘s perspective (no re-annotation 

was required; there is a one-to-one correspondence between these labels and the symmetric 

scheme presented previously). Table 8 displays the student dialogue acts and their relative 

frequencies across the corpus, along with the inter-annotator agreement statistic for that 

particular student utterance.  
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Table 8. Student dialogue acts, frequencies, and Kappas in Corpus III 

Student Dialogue Act Relative 
Frequency 

Human 
κ 

ACKNOWLEDGMENT (ACK) .17 .90 

REQUEST FOR FEEDBACK (RF) .20 .91 

EXTRA-DOMAIN (EX) .08 .79 

GREETING (GR) .04 .92 

UNCERTAIN FEEDBACK WITH ELABORATION 
(UE) 

.01 .53 

UNCERTAIN FEEDBACK (U) .02 .49 

NEGATIVE FEEDBACK WITH ELABORATION 
(NE) 

.01 .61 

NEGATIVE FEEDBACK (N) .05 .76 

POSITIVE FEEDBACK WITH ELABORATION (PE) .02 .43 

POSITIVE FEEDBACK (P) .09 .81 

QUESTION (Q) .09 .85 

STATEMENT (S) .16 .82 

THANKS (T) .05 1 

 

7.1 Features 

To address the classification task, the models make use of features of each utterance that 

include the words and pairs of words, parts of speech, and syntactic structure. These features 

are encoded within a vector-based representation along with structural features that include 

dialogue act labels, task/subtask labels, and set of hidden dialogue state prediction features as 

described below.
29

 

                                                 

29
 The lexical and syntactic features were extracted collaboratively with Eunyoung Ha.  
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Lexical and syntactic features were automatically extracted from the utterances using 

the Stanford Parser default tokenizer and part of speech (POS) tagger (De Marneffe et al., 

2006). The parser created both phrase structure trees and typed dependencies for individual 

sentences. From the phrase structure trees, we extracted the top-most syntactic node and its 

first two children. In the case where an utterance consisted of more than one sentence, only 

the phrase structure tree of the first sentence was considered. Typed dependencies between 

pairs of words were extracted from each sentence. Individual word tokens in the utterances 

were further processed with the Porter Stemmer (Porter, 1980) in the NLTK package (Loper 

& Bird, 2004). The POS features were extracted in a similar way. Unigram and bigram word 

and POS tags were included for feature selection in the classifiers.  

Structural features include the annotated dialogue acts (Section 4.1), the annotated 

task/subtask labels (4.2), and attributes that represent the hidden dialogue state (Section 6.2). 

To derive these hidden dialogue state features, an HMM was trained utilizing the 

methodology described in Section 6.3 and it was used to generate predictions in the form of a 

probability distribution over possible user utterances at each step in the dialogue. This set of 

stochastic features was subsequently passed to the classifier as part of the input vector, as 

depicted in Figure 21.  
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Figure 21. Generation of hidden dialogue state features 

7.2 Input Vectors 

The features were combined into a shared vector-based representation for training the 

classifier. As depicted in Table 9, the components of the feature vector include binary 

existence vectors for lexical and syntactic features for the current (target) utterance as well as 

for three utterances of left context (this left context may include both tutor and student 

utterances, which are distinguished by a separate indicator for the speaker). The task/subtask 

and correctness history features encode the separate stream of task events. There is no one-

to-one correspondence between these history features and the left-hand dialogue context, 

because several task events could have occurred between a pair of dialogue events (or vice 

versa). This distinction is indicated in the table by the representation of dialogue time steps as 

[t, t-1,…] and task history steps as [task(t), task(t-1),…]. In total, the feature vectors included 

11,432 attributes that were made available for feature selection.  
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7.3 Dialogue Act Classification Experiments 

This section describes the vector-based models for classification of user dialogue acts using 

maximum likelihood logistic regression. In addition to investigating the accuracy of the 

overall model, binary dialogue act classifiers investigate the utility of feature types for 

discriminating between particular dialogue acts of interest.  

The classifiers are based on logistic regression, which finds a discriminant for each pair of 

dialogue acts by assigning weights in a maximum likelihood fashion.
30

 The logistic 

regression models were learned using the Weka machine learning toolkit (Hall et al., 2009). 

For feature selection, attribute subset evaluation was used in conjunction with a best-first 

approach that greedily searched the space of possible features using a hill climbing approach 

with backtracking, also within the Weka toolkit. The prediction accuracy of the classifiers 

was determined through ten-fold cross-validation on the corpus, and the results below are 

presented in terms of average prediction accuracy (number of correct classifications divided 

by total number of classifications) as well as by the Kappa statistic, which adjusts for 

expected agreement by chance.  

  

                                                 

30
 In general, the model that maximizes likelihood is precisely the model that maximizes entropy under the same 

constraints (Berger et al., 1996).  
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Table 9. Feature vectors for dialogue act classification 

Feature vector f Description 

[wt,1,…wt,|w|, 
pt,1,…,pt,|p|, 
dt,1,…,dt,|d|, 
st,1,…,st,|s|] 

Binary existence vector for word unigrams & bigrams, POS 
unigrams & bigrams, dependency types, and syntactic 
nodes for current target utterance t  

[wt-k,1,…wt-k,|w|, 
pt-k,1,…,pt-k,|p|, 
dt-k,1,…,dt-k,|d|, 
st-k,1,…,st-k,|s|] 
wherek=1,…,3 

Binary existence vector for word unigrams & bigrams, POS 
unigrams & bigrams, dependency types, and syntactic 
nodes for three utterances of left context 

[p(o1),…,p(o|S|)] 
Probability distribution for emission symbols in predicted 
next hidden state as generated by HMM  

[dat-1,dat-2, dat-3] Dialogue act left context  

[spt-1,spt-2, spt-3] Speaker label left context 
[tktask(t-1),tktask(t-2), tktask(t-3)] Three steps of subtask history (each level of hierarchy 

represented as a separate feature)  

pt Indicator for whether the target utterance was immediately 
preceded by a task event 

  

7.3.1 Overall classification 

The overall dialogue act classification model was trained to classify each utterance with 

respect to the thirteen dialogue acts (Table 8). For this task, the feature selection algorithm 

selected 63 attributes including some syntax, dependency, POS, and word attributes as well 

as two steps of dialogue act history, speaker history, and one task/subtask feature. No hidden 

dialogue state features or task correctness attributes were selected. The overall average 

classification accuracy across ten folds was 62.8% (stdev=3. 26%). This accuracy constitutes 

a 3.7-fold improvement over baseline chance of 17% (the relative frequency of the most 
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frequently occurring dialogue act, ACK). An alternate nontrivial baseline is a bigram model 

on true dialogue acts (including speaker tags); this model‘s accuracy was 36.8%.  

In addition to the classifier with all features available as described above, the 

experiments include classifiers that used only the lexical and syntactic features of each 

utterance. This approach is of interest in part because it avoids the error propagation that can 

happen when a model relies on a series of its own previous classifications as features. The 

classifier that had access to only the set of lexical and syntactic features selected 85 of these 

attributes and achieved an average prediction accuracy of 60.2% (stdev=2.44%) and ĸ=. 53 

(stdev=0.03), slightly worse than the 62.8% achieved with the model that had access to all 

features (one-tailed two sample t-test p=0.027). The overall average Kappa for the full 

classifier was ĸ=. 57 (stdev=0.04). The confusion matrix for this model is depicted in Figure 

22, which depicts agreements along the diagonal and disagreements elsewhere. In this figure, 

the row indicates the true tag and the column indicates the automatically applied tag. 

 

Figure 22. Confusion matrix for student dialogue act classification (row=true tag)  
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7.3.2 Binary dialogue act classifiers 

In tutoring, some student dialogue acts are particularly important to identify because of their 

implications for the tutor‘s response or for the student model. For example, a student‘s 

REQUEST FOR FEEDBACK requires the tutor to assess the condition of the task artifact, rather 

than to query the in-domain factual knowledge base. UNCERTAIN FEEDBACK is another 

dialogue act of high importance because identifying it allows the tutor to respond in an 

affectively advantageous way (Forbes-Riley & Litman, 2009). Although hidden dialogue 

state features and task/subtask features generally were not useful for the overall dialogue 

classification task, it is of interest to explore whether these features are useful for 

differentiating particular dialogue acts of interest.  

To explore which features are useful for classifying particular dialogue acts, we 

constructed binary dialogue act classifiers, one for each dialogue act, by preprocessing the 

dialogue act labels from the set of thirteen down to TRUE or FALSE depending on whether the 

label of the utterance matched the target dialogue act for that specialized classifier. Table 10 

displays the features that were selected for each binary classifier, along with the percent 

accuracy and Kappa for each model. Note that for some dialogue acts the chance baseline is 

very high, and therefore even a model with high prediction accuracy achieves a low Kappa.  

As shown in the table below, for several dialogue act models, the feature selection 

algorithm retained subtask and HMM features. However, in an experiment to quantify the 

utility of these features, the performance of the binary all-features models was compared to 

the performance of the overall all-features model on that dialogue act. The only dialogue acts 

whose specialized models outperformed the overall model (p<0.05, one-tailed t-test) were 

GREETING and EXTRA-DOMAIN. These results demonstrate that hidden dialogue state and 

task/subtask features did not improve classification accuracy for dialogue acts of high 

pedagogical interest.  
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Table 10. Feature selection for binary dialogue act classifiers 

DA Features Selected 
% 

Correct Model κ 

ACK 51 
Lexical/syntax, HMM, DA history 
(preceding=S), speaker history 

(preceding=Tutor)  
.933 .75 

RF 42 Lexical/syntax, DA history, preceded by 
subtask 

.905 .72 

EX 57 Dependency, pos, word, HMM, DA history 
(preceding=EX), subtask 

.939 .45 

GR 11 Syntax, pos, word, DA (previous=EMPTY), 
speaker, subtask  

.998 .97 

UE 21 Dependency, pos, word, subtask .991 .33 

U 63 Syntax, dependency, pos, word, HMM, 
subtask 

.979 .21 

NE 44 Dependency, pos, word, HMM, DA history 
(2 ago=UNCERTAIN), subtask 

.987 0 

N 83 Lexical/syntax, DA history, subtask .966 .76 

PE 90 Dependency, pos, word, HMM, subtask .976 .10 

P 110 Dependency, pos, word, HMM, DA history 
(previous=REQUEST FEEDBACK) 

.945 .58 

Q 43 Syntax, dep, pos, word, HMM, subtask .940 .60 

S 92 Syntax, pos, word, HMM, DA history 
(previous=EMPTY or Q) 

.901 .57 

T 29 Syntax, pos, word, DA history 
(previous=POSITIVE) (3 ago=POSITIVE) 

.992 .92 
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7.4 Discussion 

This chapter has presented a maximum likelihood classifier that assigns dialogue act labels to 

user utterances from a corpus of human-human tutorial dialogue given a set of lexical, 

syntactic, and structural features. Overall, this classifier achieved 62.8% accuracy in ten-fold 

cross-validation on the corpus.
31

 However, during feature selection, the overall model did not 

select any hidden dialogue state features, and selected only one task/subtask feature out of 

more than 50 possible. Therefore, the results do not support Hypothesis 2.2, which stated that 

the structural features of hidden dialogue state and task/subtask would improve dialogue act 

classification for user utterances.  

The performance (369% over chance baseline) achieved with the overall model is on 

par with other automatic dialogue act tagging models, both sequential and vector-based, in 

task-oriented domains that do not feature complex, user-driven parallel tasks. In a catalogue 

ordering domain with an integrated task and dialogue model, Bangalore et al.(2009) report 

75% classification accuracy for user utterances using a maximum entropy classifier, a 275% 

improvement over baseline. Poesio & Mikheev (1998) report 54% classification accuracy by 

utilizing conversational game structure and speaker changes in the Maptask corpus, an 

improvement of 170% over baseline. Recent work on Maptask reports a classification 

accuracy of 65.7% using lexical and syntactic features alone (Sridhar et al., 2009). This 

classifier is analogous to the lexical/syntactic feature model of this work, which achieved 

60.2% accuracy.  

The results of these models demonstrate that, consistent with the findings in other 

task-oriented domains, lexical/syntactic features are highly useful for classifying student 

dialogue moves in this complex task-oriented domain. The utility of these features is so great 

                                                 

31
 Individual words, or unigrams, were not included in an early round of classifiers, and the performance was 

significantly lower, at 45. 3% overall.  



www.manaraa.com

 

 

 

114 

that hidden dialogue state and task/subtask features were not useful for improving 

performance of the models in terms of classification accuracy. In contrast, the next chapter 

investigates the use of these features within a hierarchical HMM framework for predicting 

human tutor moves within a corpus, where the HMM structure significantly improves 

performance of the models.  
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CHAPTER 8    

Leveraging Hidden Dialogue State to Select Tutorial Moves 

The previous chapter dealt with learning data-driven models for dialogue act classification of 

student utterances within task-oriented tutorial dialogue. This chapter turns to the equally 

important task of tutorial move selection. Historically, tutorial dialogue policies have been 

based either on system designers‘ pedagogical knowledge or on observational studies of 

human tutors followed by manual analysis. (Please see Section 2.2 for a detailed historical 

overview.)  This chapter presents a data-driven approach that extracts a tutorial dialogue 

management policy directly from a corpus. The degree to which this tutorial dialogue policy 

represents the actions of the human tutors is evidenced by its accuracy on the task of 

predicting the tutors‘ dialogue moves. The results provide support for Hypothesis 2.3, which 

states that a hierarchical HMM that explicitly models task/subtask structure will predict 

tutorial moves within the corpus more accurately than a flat HMM that does not model the 

task structure.  

 For student utterances, the surface lexical and syntactic features are given at the time 

of classification (motivating the use of the vector-based approach to handle a large number of 

features). In contrast, in a real-time tutorial dialogue applications the surface features of a 

planned tutorial utterance are not yet available, but will be realized based on the systems‘ 

choice of dialogue act. Therefore, for the task of predicting tutor moves, rather than utilizing 

feature vectors as input to a classifier, a sequential representation is used in which the only 

input for training the models are sequences of dialogue acts and task events. In addition to 

flat HMMs, hierarchical hidden Markov models are constructed that explicitly model 
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task/subtask structure. The models presented in this chapter were trained using the main 

corpus, Corpus III.  

8.1 Introduction to Hierarchical Hidden Markov Models 

Hierarchical hidden Markov models (HHMMs) allow for explicit representation of multilevel 

stochastic structure (Fine et al., 1998). HHMMs include two types of hidden states: internal 

nodes, which do not produce observation symbols, and production nodes, which do produce 

observations. An internal node includes a set of sub-states that correspond to its potential 

children, S={s1, s2, …,sN}, each of which is itself the root of an HHMM. The initial 

probability distribution Π=[πi] for each internal node governs the probability that the model 

will make a vertical transition to substatesi from this internal node; that is, that this internal 

node will produce substatesi as its leftmost child. Horizontal transitions are governed by a 

transition probability distribution similar to that described above for flat HMMs. Production 

nodes are defined by their observation symbol alphabet and an emission probability 

distribution over the symbols; HHMMs do not require a global observation symbol alphabet. 

HHMMs of arbitrary topology can be trained using a generalized version of the Baum-Welch 

algorithm (Fine et al., 1998; Rabiner, 1989). The generative topology of an HHMM in 

context of the tutorial dialogue application at hand is illustrated in Figure 23.  
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Figure 23. Generative topology of hierarchical HMM 

8.2 Learned Hierarchical HMM 

The HHMMs in this chapter feature a pre-specified model topology based on known 

task/subtask structure. A Bayesian view of a portion of the best-fit HHMM is depicted in 

Figure 24. Again, only the principal distribution components are shown at the sub-task level. 

This model was trained using five-fold cross-validation instead of ten-fold cross-validation, 

to address the absence of symbols from the training set that are present in the testing set, a 

problem that arose from splitting the data hierarchically.  
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Figure 24. Bayesian view of learned hierarchical HMM 

8.3 Comparison of MM, HMM, and HHMM Prediction Accuracy 

Markov Models (MMs), HMMs, and HHMMs were trained on Corpus III and their 

prediction accuracy of tutorial dialogue acts was calculated by providing the model with 

partial sequences from the test set and querying for the next tutorial move. The chance 

baseline prediction accuracy for this task is 41.1%, corresponding to the most frequent 

tutorial dialogue act (STATEMENT). As depicted in Figure 25, a first-order MM performed 

worse than baseline (p<0.001)
32

, at 27% average prediction accuracy (σMM=6%). HMMs 

performed better than baseline (p<0.0001), with an average accuracy of 48% (σHMM=3%). 

                                                 

32
 All p-values in this section were produced by two-sample one-tailed t-tests with unequal sample variances.  
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HHMMs averaged 57% accuracy, significantly higher than baseline (p=0.002), but weakly 

significantly higher than HMMs (p=0.04) and with high variation (σHHMM=23%).33
 

 

 

Figure 25. Avg. prediction accuracy across folds of MM, HMM, and HHMM compared to 
the most-frequent class baseline34  

To further explore the performance of the HHMMs, Figure 26 displays their prediction 

accuracy on each of six labeled subtasks. These subtasks correspond to the top level of the 

hierarchical task/subtask annotation scheme. The UNDERSTAND THE PROBLEM subtask 

corresponds to the initial phase of most tutoring sessions, in which the student and tutor agree 

to some extent on a problem-solving plan. Subtasks 1, 2, and 3 account for the 

implementation and debugging of three distinct modules within the learning task, and 

Subtask 4 involves testing and assessing the student‘s finalized program. 100% of students 

reached Subtask 1, 94% of students reached Subtask 2, 81% of students reached Subtask 3, 

                                                 

33
 Because the two tutors in this study utilized different strategies (Sections 4.3 and 6.3), separate models were 

also built by tutor in a separate experiment. However, these models performed on par with (no statistical 

difference from) the aggregate models. This phenomenon is likely due to the greater amount of training data 

available to the aggregate models.  

34
 See Section 8.4 for further discussion.  
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and 54% of students reached Subtask 4. The EXTRA-DOMAIN subtask involves side 

conversations whose topics are outside of the domain.   

The HHMM performed as well as or better (p<0.01) than baseline on the first three 

in-domain subtasks. The performance on Subtask 4 was not distinguishable from baseline 

(p=0.06). The model did not outperform baseline (p=0.40) for the UNDERSTAND THE 

PROBLEM subtask, and qualitative inspection of the corpus reveals that the dialogue during 

this phase of tutoring exhibits limited regularities between students; additionally, only 54% 

of students engaged in this subtask; the remaining students began directly working on 

Subtask 1.  

 

Figure 26. Average HHMM prediction accuracy across folds by subtask 

8.4 Discussion 

The results support Hypothesis 2.3 that HMMs, because of their capacity for explicitly 

representing dialogue structure at an abstract level, perform better than MMs for predicting 

tutor moves. The results also suggest that explicitly modeling hierarchical task structure can 

further improve prediction accuracy of the model. The below-baseline performance of the 

bigram model illustrates that, unlike conversational dialogue or task-oriented dialogue that 
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does not feature a parallel user-driven task, in this complex task-oriented domain an 

immediately preceding event is not highly predictive of the next move. This finding 

highlights the possibility that the first-order Markov assumption may exclude important 

dependencies within the data, a limitation that is further discussed in Chapter 9.  

Considering the performance of the HHMM on individual subtasks reveals interesting 

properties of the dialogues. First, the HHMM is unable to outperform baseline on the 

UNDERSTAND THE PROBLEM subtask, probably due to a high level of variation between 

individuals during this portion of the dialogues. On all four in-domain subtasks, the HHMM 

achieved a 30% to 50% increase over baseline. For extra-domain dialogues, which involve 

side conversations that are not task-related, the HHMM achieved 86% prediction accuracy on 

tutor moves, which constitutes a 115% improvement over baseline. This high accuracy may 

be due in part to the fact that out-of-domain asides were almost exclusively initiated by the 

student, and tutors rarely engaged in such exchanges beyond providing a single response. 

This regularity likely facilitated prediction of the tutor‘s dialogue moves during out-of-

domain talk.  

Only one recent project reports extensively on predicting system actions from a 

corpus of human-human dialogue. Bangalore et al.‘s (2008) flat task/dialogue model in a 

catalogue-ordering domain achieved a prediction accuracy of 55% for system dialogue acts, a 

175% improvement over baseline. When explicitly modeling the hierarchical task/subtask 

dialogue structure, they report a prediction accuracy of 35.6% for system moves, 

approximately 75% above baseline (Bangalore & Stent, 2009). These findings were obtained 

by utilizing a variety of lexical and syntactic features from preceding utterances along with 

manually annotated dialogue acts and task/subtask labels. In comparison, the HHMM in this 

chapter achieved an average 42% improvement over baseline using only manually annotated 

dialogue acts and task/subtask labels without any lexical or syntactic features.  
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The best model performed better than baseline by a significant margin. The absolute 

prediction accuracy achieved by the HHMM was 57% across the corpus, which at first blush 

may appear too low to be of practical use. However, the choice of tutorial move involves 

some measure of subjectivity, and in many contexts there may be no uniquely appropriate 

dialogue act. Work in other domains has dealt with this uncertainty by maintaining multiple 

hypotheses (Wright Hastie et al., 2002) and by mapping to clustered sets of moves rather 

than maintaining policies for each possible system selection (Young et al., 2009). Such 

approaches may prove useful in the complex task-oriented domain of computer science 

tutoring as well, and may help to more fully realize the potential of a machine-learned 

dialogue management model.  
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CHAPTER 9    

Conclusion 

Creating intelligent systems that bring the benefits of one-on-one human tutoring to a broad 

population of learners is a grand challenge for the field of computing. Tutorial dialogue 

systems hold great promise for closing the effectiveness gap that has been observed between 

human tutors, as models of successful tutoring, and intelligent tutoring systems. A 

particularly important direction involves utilizing data-driven approaches for defining the 

behavior of computer-based tutorial dialogue systems based on corpora of effective human 

tutoring. These data-driven approaches may facilitate rapid computer-driven dialogue system 

development, give rise to flexible dialogue management policies, support interpretation of 

user input, and ultimately result in a more effective computer-based learning experience for 

students than any current generation tutorial dialogue system has achieved. With these goals 

in mind, this dissertation addresses two phases of data-driven investigation. The first phase 

involves collecting, annotating, and exploring corpora. The second phase involves learning 

and evaluating computational models of hidden dialogue states, student dialogue act 

classification, and tutor move prediction.  

9.1 Hypotheses Revisited 

The research presented in this dissertation has produced evidence that speaks to several 

exploratory hypotheses.  

 Hypothesis 1.1. Because human tutors adapt their behavior based on student 

characteristics including skill level, self-efficacy, and gender, the distributions of 
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dialogue acts within human-to-human tutoring sessions are dependent on these 

student characteristics.  

o The results of dialogue profile analysis (Section 5.1) indicate that human 

tutors do adapt their dialogue profiles depending on learner characteristics, 

even when those characteristics are hidden from the tutors (Boyer, Vouk et 

al., 2007). This finding suggests specific ways in which tutorial dialogue 

systems might adapt behavior based on learner characteristics, such as 

providing more acknowledgements to students with high self-efficacy, and 

anticipating more requests for feedback from female students.  

 Hypothesis 1.2. Because some tutoring approaches are more effective than others, 

given a tutoring context, the frequency of some tutor moves is positively 

correlated with student learning and motivational outcomes while other moves 

are negatively correlated with these outcomes.  

o Bigrams of incorrect student problem-solving actions, and the subsequent 

tutor moves, were considered (Section 5.2). Their relative frequency 

across the corpus was correlated with learning and motivational outcomes 

(Boyer, Phillips et al., 2008a; Boyer, Phillips et al., 2008b). Explicit 

tutorial encouragement following incorrect student action was found to 

correlate positively with motivational outcomes but negatively with 

learning. Positive cognitive feedback, as a corrective tactic, was found to 

correlate with improved motivational outcomes, but not to correlate 

significantly with learning. These results are consistent with findings from 

other tutoring domains. They highlight that caution is necessary when 

implementing explicit motivational techniques within tutorial dialogue 

systems.  
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 Hypothesis 1.3. Because autonomy is an important aspect of the learning process 

that may impact cognitive and motivational outcomes differently, the level of 

autonomy given to students during tutoring is correlated with learning and 

motivational outcomes.  

o The analysis for tutor and student initiative revealed no evidence of a 

statistically significant link between student initiative and learning 

(Section 5.3). However, students who were allowed more initiative did 

have significantly higher self-efficacy gain from pre-test to post-test 

(Boyer, Phillips, Wallis et al., 2009a; Boyer, Phillips, Wallis et al., 

2009b). These results suggest that allowing students more initiative may 

improve the motivational outcome of self-efficacy gain.  

 

In addition to the exploratory hypotheses listed above, several hypotheses regarding 

modeling the structure of tutorial dialogue with hidden Markov models were also addressed.  

 Hypothesis 2.1. Hidden Markov models (HMMs) are able to discover tutoring 

modes, or hidden dialogue states, that i) qualitatively correspond to tutoring 

modes from the literature, and ii) whose frequencies of occurrence correlate with 

student learning.  

o Qualitative analysis (Sections 6.1 and 6.2) suggests that the automatically 

extracted hidden states correspond to tutoring modes from the literature. 

The frequency of occurrence of some automatically extracted hidden 

dialogue states was found to correlate significantly with student learning 

(Section 6.3). These findings provide evidence that an HMM can 

automatically extract pedagogically relevant tutorial dialogue structure in 

the form of a stochastic layer formed from hidden states.  
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 Hypothesis 2.2. The hidden dialogue state and task/subtask structure are 

predictive of student dialogue acts.  

o An observable Markov baseline classifier, B1, was constructed using 

dialogue act sequences only. Model M1 was constructed using lexical and 

structural features, and M1’ added to M1‘s available features and attributes 

from the hidden dialogue state and the task/subtask structure. Both M1and 

M1’ achieved higher accuracy than B1 for the overall task of classifying a 

user utterance with respect to the full set of 13 dialogue acts. However, 

contrary to the hypothesis, M1’ did not utilize any hidden dialogue state 

features and only selected one out of more than 50 task/subtask features. 

The results demonstrate that lexical and syntactic cues are strong 

indicators of student dialogue acts, a finding that is consistent with user 

dialogue act classification from other task-oriented domains.  

 Hypothesis 2.3. The hidden dialogue state and task/subtask structure are 

predictive of tutor dialogue acts.  

o A baseline first-order Markov model, B2, of sequences of dialogue acts 

and task events was compared with a flat HMM, M2, and further with a 

hierarchical HMM, M2’, structured according to the task/subtask 

hierarchy. Both M2 and M2’ predicted human tutorial moves within the 

corpus more accurately than B2. Furthermore, consistent with the 

hypothesis, hierarchical HMM M2’ was more accurate than M2. This 

finding suggests that for the complex task-oriented domain of tutoring 

introductory computer programming, models of human tutorial dialogue 

policy can be made more accurate by leveraging knowledge of both the 

task/subtask structure and the inferred hidden dialogue state.  
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9.2 Summary 

Exploration of three tutorial dialogue corpora in the domain of introductory computer 

programming yielded new insights into the structure of the dialogue that occurs in this 

complex task-oriented domain. As expected, human tutors appear to adapt to learner 

characteristics such as incoming knowledge level, self-efficacy, and gender. Tutors undertake 

a variety of cognitive and motivational remediation. Sometimes these cognitive and 

motivational goals are at odds with each other, but it may be possible to positively impact 

both types of goals by selecting appropriate feedback. Finally, compared to a very proactive 

tutoring approach, allowing more autonomy may better support students‘ motivation.  

 A hidden Markov modeling framework was selected for development of 

computational models of the corpora because HMMs explicitly represent a stochastic layer of 

hidden structures. These hidden states were found in qualitative analysis to correspond to 

tutoring modes from the literature. Furthermore, some tutoring modes were found to correlate 

with student learning, indicating that HMMs can discover, in an unsupervised fashion, 

meaningful hidden dialogue structure.  

Based on these encouraging results, HMMs were also utilized to produce prediction 

features within a larger set of attributes for vector-based maximum likelihood classification 

of student dialogue acts. The results indicate that HMM features as well as task/subtask 

features improved dialogue act classification for three student feedback acts. Additionally, 

overall the classifiers achieved performance on par with state-of-the-art dialogue act 

classification accuracy in less complex domains.  

The flat HMM approach was extended to a hierarchical HMM that explicitly 

represented task/subtask structure within the computer programming exercise to predict 

tutorial moves within the corpus, a first step toward fully data-driven tutorial policy 

extraction. Both HMMs and hierarchical HMMs outperformed chance and a baseline Markov 
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model. Hierarchical HMMs performed with highest accuracy overall for predicting tutor 

dialogue acts.  

9.3 Limitations 

This dissertation research was conducted based on corpora of naturalistic human one-on-one 

tutorial dialogue in the domain of introductory computer programming. The extent to which 

the exploratory findings and machine-learned models generalize to other domains in natural 

language dialogue, even to tutoring in other task-oriented scientific domains, has not been 

established and is an important direction of future work. Another limitation to generalizing 

the results was the low number of women and underrepresented groups participating in the 

studies. Low participation of underrepresented groups was not unexpected given national 

trends in CS enrollments (Zweben, 2008). These students are particularly important to 

include in investigations of the impact of intelligent tutoring systems, and active steps should 

be taken to include them in future studies.  

Other limitations involve the design of the observational tutoring studies. First, while 

the tutors all had some level of experience with tutoring computer science, none had received 

formal training in pedagogical strategies. Another significant issue is that a control group was 

not included in any of the studies because of resource limitations and because holding 

subjects out for a control group would have decreased the sample size of students who were 

tutored, reducing the size of the corpora. Further, the tutoring sessions were one-time events 

rather than repeated interventions that took place over the academic term; therefore it is not 

clear what effect size these tutors would have achieved compared to classroom instruction.  

Finally, some limitations involve the models chosen. As mentioned previously, the 

Markov model and hidden Markov modeling approaches were motivated by aspects of 

natural language dialogue that have been long noted in the literature. These properties 

include the strong local dependence of adjacent dialogue acts, which has led to the common 
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practice in natural language dialogue research of making a first-order Markov assumption 

over input sequences to simplify the modeling process. However, as findings in Section 8.4 

highlight, this local dependency may not be as strong in the task-oriented domain of 

introductory computer science tutoring as in other domains such as conversational speech. 

This issue raises questions about the most suitable baseline model for comparison in future 

work, and suggests that the HMMs presented here, because of their first-order assumption, 

might be improved by taking into account a longer window of dialogue history. However, 

creating more complex models with longer-range dependencies will require larger data sets 

and increased computation time for model training, a tradeoff that must be explored to 

determine the optimal approach.  

9.4 Future Work 

Perhaps the most important area for future work that is highlighted by this dissertation 

involves unsupervised dialogue modeling, in which manual annotation is completely 

eliminated from the data processing pipeline. Unsupervised dialogue modeling has only just 

begun to be explored for conversational and task-oriented dialogue, but the challenges are 

many. The complexities of a rich task-oriented domain further complicate the unsupervised 

dialogue modeling endeavor, yet the creation of successful unsupervised task-oriented 

dialogue models will constitute a critical step toward overcoming the very high development 

cost and barriers to effectiveness that are associated with the current generation of dialogue 

systems.  

Learning models from corpora of expert human tutoring will be a key step toward 

creating highly effective data-driven tutorial dialogue policies. It is hoped that the modeling 

approaches presented in this dissertation will generalize successfully to corpora of expert 

human tutoring and to other domains.  
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While the accuracy of the dialogue act classifiers and predictors reported here are on 

par with those reported by other researchers in domains that do not involve a separate user-

driven task, it is likely that including student characteristics such as incoming knowledge 

level, self-efficacy, and gender could improve the models substantially. For example, 

exploratory work reported here indicated that dialogue profiles of students with high self-

efficacy differed substantially from those of students with lower self-efficacy. Therefore, 

including knowledge of the dialogue profile within a dialogue act classifier or tutorial move 

predictor may improve its performance.  

9.5 Concluding Remarks 

This dissertation was motivated by the author‘s desire to improve the state of computer 

science education through research into individual learner adaptation. Tutorial dialogue 

systems hold great promise for realizing that dream of bringing individualized instruction to 

every learner. While the Intelligent Tutoring Systems field is only just beginning to truly 

understand the impact of natural language dialogue, affect, collaboration, and other important 

phenomena on students‘ learning, the Natural Language Dialogue systems research 

community has begun to explore complex task-oriented domains as a focus for its work. The 

time is ripe for pedagogical goals to drive innovation in dialogue systems research, and this 

dissertation represents a first step toward this end.  
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GLOSSARY 

acoustic – the properties of an utterance relating to its sound 

adjacency pair – two dialogue acts that co-occur because one establishes an expectation for 

the other to follow (e.g., QUESTION-ANSWER, STATEMENT-ACKNOWLEDGEMENT) 

affect – emotion 

annotation – the process by which labels are applied, either manually or automatically, to 

raw data 

bigram – two adjacent observations in a sequence 

cognitive – relating to the information processing aspects of acquiring knowledge, skills, or 

understanding  

corpora – plural of corpus 

corpus – a collection of written or spoken material 

dialogue act – a communicative purpose, or action, that underlies a dialogue move (e.g., 

provide positive feedback, agree, give a command) 

dialogue move – a turn taken within dialogue; also referred to as an utterance 

dialogue policy – a mapping from a set of states to a set of actions; this mapping defines the 

dialogue moves that a system takes 

domain – an area of application; in this dissertation, refers to the tutoring of introductory 

Java programming 

inter-rater agreement – also known as inter-rater reliability; the extent to which two or 

more human annotators agree in their application of an annotation scheme to a corpus 

Kappa statistic – a measure of inter-rater agreement that adjusts for how likely the annotators 

would be to agree by chance 



www.manaraa.com

 

 

 

132 

lexical – relating to words or vocabulary 

log-likelihood score – a measure of how likely a set of observations would be under a given 

model 

policy – see dialogue policy 

prosodic – relating to vocal stress and intonation  

self-efficacy – one‘s own belief in his or her capability to produce given levels of attainment 

on a particular task. This term differs from confidence, which is more general and may 

also refer to a person‘s certainty at failing instead of succeeding 

syntactic – relating to the arrangement of words and phrases within an utterance 

tagging – see annotation 

utterance – see dialogue move 
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APPENDIX A: Select materials for Study I 

Table 11. Programming exercise for pilot studies I and II35 

Postal Bar Codes 
 

The Problem: 
For faster sorting of letters, the United States Postal Service encourages companies that 
send large volumes of mail to use a bar code denoting the ZIP code. Using the skeleton 
GUI program provided for you, you will complete this lab with code to actually generate the 
bar code for a given zip code.  
 
More About Bar Codes: 
In postal bar codes, there is a full-height frame bar on each end (and these are drawn 
automatically by the program provided for you; you don't have to write code to draw these). 
Each of the five encoded digits is represented by five bars. The five encoded digits are 
followed by a correction digit.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 

35
 Adapted directly from NC State University CSC 116 laboratory manual, Spring 2006 
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The Correction Digit 
The correction digit is computed as follows: Add up all digits, and choose the correct digit 
to make the sum a multiple of 10.For example, the ZIP code 95014 has sum of digits 19, 
so the correction digit is 1 to make the sum equal to 20. 
 
What’s Already Written? 
You can see what parts of this program are already written by running the file Main. java. 
When you do, you should see output like the image below, with a blank zip code slot. You 
can enter a zip code, and you should see that no bar code is generated (except the first 
and last full bars which are required for all bar codes).  
 
 
 
 
 
 
 
 
 
What’s Your Task? 
Your job is to take this five-digit zip code and use it to generate a bar code. The 
PostalFrame class is the one which handles this task. The three methods which you must 
complete are: 
 extractDigits() 
 calculateAndDrawCDigit() 
 drawZIPCode() 
For extractDigits(), you will need to add a private variable to the class which stores the zip 
code as separate digits.  
 
Some Helpful Information 
- If you can’t remember how to do something with the software, please refer to the 

reference sheet on your desk.  
 
- This lab involves a package named postal. This package contains classes Bar, 

FullBar, PostalBarCode, and SmallBar. The reason these classes are grouped into 
a package, is that the classes of the postal package logically belong together to 
accomplish a task. Whenever you need to use things from one package outside of 
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that package, you just import the package. This has already been done for you in 
Main and PostalFrame – you will see the statement import postal. * at the top. In 
addition to code already provided, you will need to call methods in the 
PostalBarCode class from your PostalFrame class to draw full and small bars.  

 
 
 
 
 
 

 
- Each digit of the ZIP code and the correction digit are encoded according to the 

following table (each digit has five bars -- a zero is a half bar and a one is a full 
bar). This scheme represents all combinations of two full and three half bars.  

 
Digit   
0 1 1 0 00 
1 0 00 1 1 
2 0 0 1 0 1 
3 0 0 1 1 0 
4 0 1 0 0 1 
5 0 1 0 1 0 
6 0 1 1 0 0 
7 1 0 00 1 
8 1 0 0 1 0 
9 1 0 1 0 0 
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Table 12. Student pre-survey for pilot study I 

Please rate how certain you are that you can complete a one-hour laboratory 

assignment in the situations described below.  

 

Rate your degree of confidence by recording a number from 0 to 100 using the scale 

given below: 

 
0 10 20 30 40 50 60 70 80 90 100 

Cannot         Moderately   Highly certain 
do at                                        certain can do    can do 

all 

 

 Confidence     

  (0-100) 

Complete a simple lab on my own    ______ 

 

 

Complete a challenging lab on my own 

 

   ______ 

 

 

Complete a challenging lab if I am paired with a classmate  

 

   ______ 

 

 

Complete a challenging lab if I work with an educational robot 

designed to act as my programming partner 

 

 

   ______ 

 

 

Please rate the degree to which you agree or disagree with the following statements 

using the scale given below: 

  1  2  3  4 

      Strongly         Mostly           Mostly           Strongly 

      Disagree      Disagree        Agree         Agree 

 

1. I usually enjoy CSC 116 labs.  

2. I usually find CSC 116 labs easy.  

3. I already understand the material I will need for today’s lab.  

4. I am often frustrated by CSC 116 labs.  
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Table 13. Student post-survey for pilot study I 

Please rate how certain you are that you can complete a one-hour laboratory 

assignment in the situations described below.  

 

Rate your degree of confidence by recording a number from 0 to 100 using the scale 

given below: 

 
0 10 20 30 40 50 60 70 80 90 100 

Cannot         Moderately    Highly certain 
do at                                        certain can do    can do 

all 

 

Please rate how certain you are that you could complete a future one-hour laboratory 

assignment in the situations described below.  

 

 Confidence     

  (0-100) 

Complete a simple lab using the system    ______ 

 

 

Complete a challenging lab using the system 

 

   ______ 

 

 

Please rate the degree to which you agree or disagree with the following statements 

using the scale given below: 

  1  2  3  4 

      Strongly         Mostly           Mostly           Strongly 

      Disagree      Disagree        Agree         Agree 

 

5. I enjoyed today’s lab.  

6. Using the system did not save me any time in completing the lab assignment 

compared to working on my own.  

7. Today’s lab assignment was frustrating.  

8. If given the chance, I would use the system again in a lab.  

9. Today’s lab problem was challenging for me.  

10.   Using the system helped me understand the material better than if I had worked 

on my own.  

11.   The system is difficult to use.  

12.   If given the chance, I would use the system on my own time for programming      

projects.  

 



www.manaraa.com

 

 

 

156 

Please choose one answer for each question.  

 

13. My programming partner was: 

a. far less skilled than me 

b. a little less skilled than me 

c. about the same skill level as me 

d. a little more skilled than me 

e. far more skilled than me 

 

14. My programming partner: 

a. asked too many questions 

b. asked just the right amount of questions 

c. should have asked more questions  

 

15. When I asked a question, my programming partner: 

a. usually responded with a helpful answer 

b. usually responded with an answer that was not helpful 

c. usually did not respond to my question 

d. I did not ask any questions 

 

16. I believe my programming partner was a(n): 

a. educational software robot 

b. professor 

c. graduate student 

d. CSC 116 classmate 

e. other:  ________________ 

 

17.  I imagined my programmer partner’s race was: 

a. Caucasian 

b. African American 

c. Native American 

d. Hispanic 

e. Asian 

f. Other:  ________________ 

g. I did not imagine my partner’s race 

 

18. I imagined my programmer partner’s gender was: 

a. Male 

b. Female 

c. I did not imagine my partner’s gender 

 

19. I imagined my programming partner’s age was: 
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a. 18-20 

b. 21-22 

c. 23-25 

d. 26-30 

e. 31-40 

f. 41-50 

g. over 50 

h. I did not imagine my partner’s age 

 

20. What I liked least about the system was:  ________________________________.  

21. What I liked best about the system was: _________________________________.  

22.   Additional Comments: 
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Table 14. Student pre-test for pilot study I 

Circle the best answer for each question.  

 

1. Consider the following line of java code: 

 

int z; 

 

 Is z a primitive type, or an object? 

 

a) Primitive type 

b) Object 

c) Neither 

 

2. Consider the following line of java code: 

String s; 

 

 Is s a primitive type, or an object? 

 

a) Primitive type 

b) Object 

c) Neither 

 

3. Which of these is true of an array in java? 

a) It‘s exactly the same thing as a String 

b) It‘s an object which stores more than one value and can be indexed to access the 

values 

c) It‘s an object whose size you never have to declare 

d) It‘s a primitive type which can only hold three or less integers 

e) Both a and c 

f) Both b and d 

g) None of these 

 

4. Which of the following statements correctly converts int x to a String? 

a) String s = x. toString(); 

b) String s = Integer. parseInt(x); 

c) String s = x + ―‖; 
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d) Both a and c 

e) Both b and c 

f) None of these 

 

5. Which of the following statements correctly accesses the n
th

 character in String s? 

a) s [n] 

b) s. charAt(n) 

c) s. length 

d) both a and b 

e) both a and c 

f) None of these 

 

6. Consider a String s = ―90210‖. Which of the following statements returns the ‗1‘ in 

this String? 

a) s. charAt(1); 

b) s. charAt(2); 

c) s. charAt(3); 

d) s. charAt(4); 

e) s. length(); 

f) None of these 

 

7. Consider the following code:  

for (int  k = 0; _______; k++) 

system. out. println(array[k]); 

How can you fill in the blank to correctly traverse an array of 11 values? 

a) k<11 

b) k<=11 

c) k> 10 

d) k< 10 

e) k<= 10 

f) both b and c  

g) both a and e 

h) None of these 

 

8. Write java code to declare and instantiate an array named bools of 30 booleans.  

a) arraybools = new array of Booleans; 

b) int [] bools = new int[30]; 
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c) Boolean [] bools = new Boolean[30]; 

d) Any of these will work 

e) None of these 

 

9. Imagine you have a five-digit number, such as 32,451. Which of the following finds 

the remainder when this number is divided by 10? 

 

a) 32451 & 10 

b) 32451 / 10 

c) 32451 % 10 

d) 32451 – 10 

e) None of these 

 

10.Imagine you have a three-digit number such as 798. What is the result of performing the 

java statement 798 / 100? 

 

a) 79. 8 

b) 79 

c) 7 

d) 7. 98 
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Table 15. Student post-test for pilot study I 

Circle the best answer for each question.  

 

1. True or False: int in java is a primitive type 

 

2. True or False: String in java is a primitive type 

 

3. When might we use arrays in java? 

a) To hold a bunch of characters, but never numbers.  

b) To hold a set of values of any type so we can index into the array and retrieve 

them.  

c) When we do not know how large a set of values we need to hold.  

d) When we need to store five or less integers 

e) Both a and c 

f) Both b and d 

g) None of these 

 

4. You have an int x = 31. What type should the variable y be in order to legally 

perform y = Integer. parseInt[x]? 

a) int 

b) Integer 

c) String 

d) Char [] 

e) None of these 

 

5. Consider an array: 

 

int [] x = new int [40]; 

How do we access the first element in this array? 

a) x[0] 

b) x[1] 

c) x. charAt(0) 
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d) x. intAt(1) 

e) None of these 

 

6. Consider a String s = ―54321‖. What is the result of the statement s. charAt(2)? 

a) 5 

b) 4 

c) 3 

d) 2 

e) 1 

f) None of these 

 

7. Consider the following code: 

 

int [] a = new int [23]; 

 

Fill in the blank in the following code to traverse array a.  

 

for (int c = ___; c < 23;  c++) 

 System. out. println(a[c]); 

a) 1 

b) 23 

c) 0 

d) false 

e) None of these 

 

8. Write java code to declare an instantiate an array named chars of 30 chars.  

a) char [] 30 = new char; 

b) char [] chars = new chars; 

c) array chars = new array (char); 

d) char [] chars = new char[30]; 

e) Any of these will work 

f) None of these 

 

9. Imagine you have a five-digit number, such as 47,998. What is the result of the java 

statement 47998 % 10? 
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a) 4 

b) 7 

c) 9 

d) 8 

e) None of these 

 

10. Imagine you have a three-digit number such as 364. You want to extract the first 

digit, the 3, and store it into an int d. How can you do this? 

a) int d = 364 % 10; 

b) int d = 364 / 10; 

c) int d = 364 – 10; 

d) int d = 364 & 10; 

e) None of these 
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APPENDIX B: Materials for Main Study 

Table 16. Programming exercise for main study 

Waimea County Ambulance Study 
Problem Description 

 
To help ensure the safety of their residents, the Waimea County 
Emergency Response office is re-assessing their ambulance 
dispatch system. A study has already been conducted to gather 
data about the ambulance response times to 911 calls. You have 
been hired to analyze this data and help the emergency response 
office answer some questions about how quickly their ambulances 
are able to reach people in need. You’ll be taking over for Maddie, 
the previous developer who was recently promoted.  
 
Maddie already completed the class called Ambulance. java, 
which is a driver for the whole program (it contains the main method). She also completed 
AmbulanceGUI. java, which is used for displaying the ambulance response times graphically. You 
just need to complete a few methods in the AmbulanceData class to finish this project!   
 

1. In the AmbulanceData class, you must complete the method plotTimes() so that all the 
ambulance response times in the parameter array (arrayToPlot) are displayed on a graph. 
Maddie already created the method outline with some comments, so you’ll just need to read 
her comments and fill in the method.  
 
Maddie had an intern draw a graph by hand for the response times. This way, you know 
what the output of your program is supposed to look like. The x-axis is how many minutes 
an ambulance took to respond, the y-axis is a count of how many of the response times in 
the data set took that long. For instance, there were three ambulance responses that took 7 
minutes.  
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2. The department is considering replacing its aging fleet with new ambulances. Because of 
the county’s tight budget, these would be slightly slower ambulances than the current fleet 
but the county could afford more ambulances overall. The staff believe the effects of this 
change would be:   
- On all response times below 5 minutes, the new fleet would take 1 minute longer to 

respond.  
- On all response times above 18 minutes, the new fleet would take 4 fewer minutes to 

respond.  
- Other response times would remain the same.  
Complete the method newFleetProjections() which creates a new array of hypothetical 
response times given the above effects of the new fleet. You will need to create a new array 
because you must not overwrite the true response times in the original array.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
3. There is more analysis work than Maddie originally thought, so one of your colleagues, 

Shannon, is writing a set of methods that perform the statistical analysis so your group can 
give a detailed report to the Waimea County authorities. Shannon’s code needs to be able 
to pass an array of unsorted times to a sortArray method, and get back an array of sorted 
times. Write a method called sortArray in the AmbulanceData class. The sortArray method 
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should take an array of doubles as a parameter, and return a sorted ascending version of 
the parameter array without overwriting the contents of the original array.  
   The next page has some details of how your sort method should work.  
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Table 17. Student pre-survey for main study 

Please rate how certain you are that you can do each of the things described below by writing the 

appropriate number.  

 

Rate your degree of confidence by recording a number from 0 to 100 using the scale given below: 

 

 0 10 20 30 40 50 60 70 80 90 100  

Cannot do 

at all 

  Moderately 

can do 

  Highly certain 

Can do 

 

 

 Confidence 

(0-100) 

Learn Computer Science.  ________ 

Learn CSC 116 course material.  ________ 

Complete a simple programming exercise on my own.  ________ 

Complete a challenging programming exercise on my own.  ________ 

Complete a challenging programming exercise if I am in a lab 

where a TA is available to help me.  ________ 

Explain for-loops to others well.  ________ 

Explain arrays to others well.  ________ 

Explain method calls to others well.  ________ 

Use for-loops in a programming exercise correctly and 
effectively.  ________ 
Use arrays in a programming exercise correctly and effectively.  ________ 
Make method calls correctly and effectively.  ________ 
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Please rate the degree to which you agree or disagree with the following statements: 

 
Not At All  Moderate  

Very 

Much 

I usually enjoy CSC 116 course 

material.  
○ ○ ○ ○ ○ 

I usually find CSC 116 exercises 

challenging.  
○ ○ ○ ○ ○ 

I understand for-loops.  ○ ○ ○ ○ ○ 

I understand arrays.  ○ ○ ○ ○ ○ 

I am experienced using the eclipse 
development environment.  

○ ○ ○ ○ ○ 

I am experienced using the eclipse 
development environment.  

○ ○ ○ ○ ○ 
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Table 18. Pre/post-test for main study 

 

Complete each of the following problems to the best of your ability. Even if you do not know how to 

completely answer the question, fill in as much as you know.  

 

1. Write a chunk of Java code to accomplish each of these tasks: 
 

a. Declare an array of integer type and give it an initial size of 100. 
 

b. Test the ith element of the array you declared in part a of this question and print “true” if 
the element is equal to 5 and “false” otherwise. Assume that i has already been declared 
and initialized.  

 

c. Set the ith element of the array you declared in part a of this question to be 5. Again, 
assume that i has already been declared and initialized.  

 

2. Write a piece of Java code that prints “Cowabunga!” exactly 73 times. System. out. println can 
be used to print the string.  

 

3. In a Java program, an array named firstArray of type int has been created and initialized. Write a 
line of Java code to create an array named secondArray that is the same size and same type as 
firstArray. The contents of secondArray do not need to be initialized to be the same as the 
contents of firstArray.  

 

4. An array a has already been declared as an array of integers in Java.  
a. Assuming i and j are integers in the range of a, write a piece of Java code to swap the 

values located at a[i] and a[j].  
 

b. Write a piece of Java code to print the elements of a in the order they appear in the 
array.  

 

c. Write a piece of Java code to print the elements of a in the reverse order they appear in 
the array.  
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Table 19. Student post-survey for main study 

Please rate how certain you are that you can do each of the things described below by writing the 
appropriate number.  
 

Rate your degree of confidence by recording a number from 0 to 100 using the scale given below: 
 

 0 10 20 30 40 50 60 70 80 90 100  
Cannot do 

at all 
  Moderately 

can do 
  Highly certain 

Can do 
 

 Confidence 
(0-100) 

Learn Computer Science.  ________ 
Learn CSC 116 course material.  ________ 
Complete a simple programming exercise on my own.  ________ 
Complete a challenging programming exercise on my own.  ________ 
Complete a challenging programming exercise if I am in a lab 
where a TA is available to help me.  ________ 
Explain for-loops to others well.  ________ 
Explain arrays to others well.  ________ 
Explain method calls to others well.  ________ 
Use for-loops in a programming exercise correctly and 
effectively.  ________ 
Use arrays in a programming exercise correctly and effectively.  ________ 
Make method calls in a programming exercise correctly and 
effectively.  ________ 

 
 

Please rate the degree to which you agree or disagree with the following statements: 
Not at all              Moderate          Very much 

I enjoyed today’s programming exercise.  ○ ○ ○ ○ ○ 

Today’s programming exercise was frustrating.  ○ ○ ○ ○ ○ 

I understand for-loops.  ○ ○ ○ ○ ○ 

I understand arrays.  ○ ○ ○ ○ ○ 
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Given the chance, I would use this software again 
for a programming exercise.  ○ ○ ○ ○ ○ 

Given the chance, I would work with this tutor 
again for a programming exercise.  ○ ○ ○ ○ ○ 

This software would be just as helpful if there were 
no tutor there to help me.  ○ ○ ○ ○ ○ 

The software was difficult to use.  ○ ○ ○ ○ ○ 

 
Please choose one answer for each question.  
 
1. It seems like the TA was _____ knowledgeable about programming than me: 

a. far less c. about equally e. far more  

b. a little less  d. a little more   
 
2.The tutor: 

a. asked too many questions c. should have asked more questions 

b. asked just the right amount of questions  
 
3. When I asked a question, the tutor: 

a. usually responded with a helpful answer c. usually did not respond to my question 

b. usually responded with an unhelpful answer d. I did not ask any questions 
 
4. Select a rating for each of the following: 

 Not at all Moderately Very 
Much 

How helpful was the tutor? ○ ○ ○ ○ ○ 
How friendly was the tutor? ○ ○ ○ ○ ○ 
How empathetic was the tutor? ○ ○ ○ ○ ○ 
How knowledgeable was the tutor? ○ ○ ○ ○ ○ 
How genuine was the tutor? ○ ○ ○ ○ ○ 
How kind was the tutor? ○ ○ ○ ○ ○ 

 
5. What I liked least about working with the tutor was: 
 
6. What I liked best about working with the tutor was: 
 
7. Additional comments: 
 


